摘要:
Piezoelectric vibrating pieces are disclosed having selectively roughened surfaces. An exemplary piece is made of a piezoelectric material configured as a piezoelectric substrate. The piece also includes at least one excitation electrode and at least one extraction electrode. The substrate has opposing main surfaces initially having low surface roughness. At least one main surface is formed in a mesa or reverse mesa manner, wherein the central region has a different thickness than the peripheral region. The central region has relatively low surface roughness (irregular unevenness), while the peripheral region has relatively high surface roughness. The excitation electrode is formed on the central region (mesa or reverse mesa) while the extraction electrode (connected to the excitation electrode) is formed on the peripheral region.
摘要:
An exemplary method for a producing a piezoelectric vibrating piece having at least one mesa step includes forming a metal film on a main surface of a piezoelectric wafer. A through-groove is formed through the thickness of the wafer to form a plan profile of a desired piezoelectric substrate. A film of photoresist is formed on the surface of the metal film. A resist is applied, exposed, and formed into a resist pattern that defines a first mesa step along at least a portion of the plan profile. In regions not protected by the metal film, the piezoelectric substrate is etched to a defined depth to form a mesa step. The denuded edge surface of the metal film is edge-etched. A second mesa step, inboard of the first mesa step, can be formed by repeating the edge-etching and substrate-etching steps using the metal film as an etch protective film.
摘要:
An exemplary method for a producing a piezoelectric vibrating piece having at least one mesa step includes forming a metal film on a main surface of a piezoelectric wafer. A through-groove is formed through the thickness of the wafer to form a plan profile of a desired piezoelectric substrate. A film of photoresist is formed on the surface of the metal film. A resist is applied, exposed, and formed into a resist pattern that defines a first mesa step along at least a portion of the plan profile. In regions not protected by the metal film, the piezoelectric substrate is etched to a defined depth to form a mesa step. The denuded edge surface of the metal film is edge-etched. A second mesa step, inboard of the first mesa step, can be formed by repeating the edge-etching and substrate-etching steps using the metal film as an etch protective film.
摘要:
The present disclosure provides a mesa-type AT-cut quartz-crystal vibrating piece, in which amount of the vibrating unit is adjusted to appropriate amount, in order to inhibit unnecessary vibration and to prevent degradation. The mesa-type AT-cut quartz-crystal vibrating piece (30) for vibrating piece vibrates at 38.400 MHz comprises a rectangular excitation unit (31), a peripheral region (32) formed in periphery of the excitation unit and thinner than the excitation unit. The thickness difference h (μm) between one principal surface of the excitation unit and the adjacent peripheral region is obtained by the following equation: h=(0.2×Mx)−143 The length of the x-axis direction of the crystallographic X-axis is Mx (μm).
摘要:
An object of the invention is to provide a method of manufacturing a stacked crystal resonator whereby a large number of stacked crystal resonators formed on a wafer can be easily broken away from the wafer, and the risk of damage to the outside surfaces and the like of the stacked crystal resonators is reduced. There is formed a framed crystal plate connected to a first wafer by a first support section, a cover connected to a second wafer by a second support section, and a base connected to a third wafer by a third support section, and a thickness of at least one of the first support section through third support section is thinner than a thickness the connected wafer.
摘要:
To provide an AT-cut quartz-crystal vibrating piece in which size of the vibrating unit is adjusted to appropriate value, so that the unnecessary vibration is inhibited and degradation of its characteristics is prevented. A mesa-type AT-cut quartz-crystal vibrating piece for vibrating at 38.400 MHz comprising a rectangular excitation unit (31) and a peripheral region (32) formed on the periphery of the excitation unit and having a thickness less than the thickness of the excitation unit, is represented by the following equation: Mx/Gx=0.09×n−0.06 (n: natural number) . . . (1). Length of a crystallographic x-axis direction of the excitation unit is defined as Mx (mm) and length of the crystallographic x-axis direction of the peripheral region and excitation unit is defined as Gx (mm).
摘要:
A crystal device and an inspection method for inspecting the crystal device are provided. The crystal device includes: a crystal plate; excitation electrodes formed on the crystal plate; extraction electrodes extending from the excitation electrodes; electrode pads electrically connected with the extraction electrodes; a package including mounting terminals formed on a mounting surface and connection terminals formed on a bottom surface, which is on the other side of the mounting surface, and electrically connected with the mounting terminals; and an electrically-conductive adhesive agent bonding and fixing the connection terminals to the electrode pads. An bonding status inspection region, on which no metal film is formed, is formed in the crystal plate, and the bonding status inspection region is surrounded by or adjacent to the electrode pads. In addition, the bonding status inspection region occupies not more than 25% of the area of the electrode pads.
摘要:
A mesa-type quartz-crystal vibrating piece includes a vibrator in a quadrangular shape with both main surfaces, a pair of excitation electrodes on both the main surfaces, a thin portion outside of the quadrangular shape, and a pair of extraction electrodes. The thin portion has a thickness thinner than a thickness of the vibrator. The pair of extraction electrodes are extracted from the excitation electrodes to a predetermined direction. A center of a first length in the predetermined direction of the excitation electrode is decentered from a center of a second length in the predetermined direction. The second length includes a length of the vibrator and a length of the thin portion. The center of the first length is decentered toward an opposite side of the extraction electrode by 25 μm to 65 μm.
摘要:
Quartz-crystal devices are disclosed, of which the CI value is reduced by adjusting the shortest distance between an edge of electrically conductive adhesive and an edge of the excitation electrode. The device has a quartz-crystal plate having long-edges and short-edges. Excitation electrodes are on first and second surfaces of the plate. Conductive pads are electrically connected to respective excitation electrodes and extend to the short-edge of the quartz-crystal plate. A package having a pair of external mounting terminals and respective connecting electrodes are situated on opposing sides of the mounting terminals for making electrical connections to the mounting terminals. An electrically conductive adhesive bonds the connecting terminals and respective conductive pads together, and the quartz-crystal plate onto the package. The shortest distance between an edge of the adhesive and an edge of the excitation electrode is 10%-15% the length of the quartz-crystal plate in the long-edge direction.
摘要:
Piezoelectric vibrating pieces are disclosed having selectively roughened surfaces. An exemplary piece is made of a piezoelectric material configured as a piezoelectric substrate. The piece also includes at least one excitation electrode and at least one extraction electrode. The substrate has opposing main surfaces initially having low surface roughness. At least one main surface is formed in a mesa or reverse mesa manner, wherein the central region has a different thickness than the peripheral region. The central region has relatively low surface roughness (irregular unevenness), while the peripheral region has relatively high surface roughness. The excitation electrode is formed on the central region (mesa or reverse mesa) while the extraction electrode (connected to the excitation electrode) is formed on the peripheral region.