Abstract:
A lithium secondary battery is provided with a positive electrode, a negative electrode (1), a separator interposed between the positive and negative electrodes, and an electrode assembly having the negative electrode (1), the positive electrode, and the separator. The negative electrode (1) has a negative electrode current collector (11) and negative electrode active material layers (12), (13) formed on respective surfaces of the negative electrode current collector (11). The negative electrode active material layers are composed of an alloy containing silicon, which intercalates and deintercalates lithium, and iron, which does not intercalate or deintercalate lithium. At least a portion of the electrode assembly has a curved portion in which the negative electrode active material layer (13) disposed inward relative to the negative electrode current collector contains a higher concentration of the iron than the negative electrode active material layer (12) disposed outward relative to the negative electrode current collector.
Abstract:
A rechargeable lithium battery including a negative electrode made by depositing a noncrystalline thin film composed entirely or mainly of silicon on a current collector, a positive electrode and a nonaqueous electrolyte, characterized in that said nonaqueous electrolyte contains carbon dioxide dissolved therein.
Abstract:
An electrode for a lithium secondary cell capable of attaining excellent charge/discharge characteristics with high discharge capacity is obtained by properly controlling a component of a collector diffusing into active material layers formed on both sides of the collector. Embodiments include forming a first active material layer consisting of a plurality of layers on a first surface of a collector, and forming a second active material layer consisting of a plurality of layers on a second surface of the collector. At least one layer constituting the second active material layer is formed before forming all layers constituting the first active material layer, thereby preventing heat for forming at least one of the layers constituting the second active material layer from being applied to all layers constituting the first active material layer.
Abstract:
Charge-discharge cycle performance is improved in a lithium secondary battery including a negative electrode containing a negative electrode active material having silicon as its main component, provided on a surface of a current collector, a positive electrode containing a positive electrode active material, and a non-aqueous electrolyte. The positive electrode active material is a lithium transition metal oxide containing Li and Co and having a layered structure, and further containing a group IVA element of the periodic table, such as Zr, Ti, or Tf, and a group IIA element of the periodic table, such as Mg.
Abstract:
A rechargeable lithium battery including a negative electrode made by depositing a noncrystalline thin film composed entirely or mainly of silicon on a current collector, a positive electrode and a nonaqueous electrolyte, characterized in that said nonaqueous electrolyte contains carbon dioxide dissolved therein.
Abstract:
A method of manufacturing an electrode for a lithium secondary battery in which a thin film of active material is deposited on a current collector is provided that eliminates adverse effects on the battery caused by protrusions adhered on an electrode surface. The method of manufacturing an electrode for lithium secondary batteries includes depositing a thin film of active material on a current collector using thin-film deposition equipment as shown in FIG. 1, and performing a compression process after depositing the thin film, whereby the heights of protrusions formed on the electrode surface are reduced.
Abstract:
An electrode for lithium secondary battery having a current collector and, deposited thereon, a thin film comprising silicon as a main component, characterized in that the thin film comprising silicon contains at least one of the elements belonging to the groups IIIa, Iva, Va, VIa, VIIa, VIII, Ib and IIb in the fourth, fifth and sixth periods of the Periodic Table (exclusive of copper (Cu)) at least in the surface portion thereof.
Abstract:
A method of manufacturing an electrode for a lithium secondary battery in which a thin film of active material is deposited on a current collector is provided that eliminates adverse effects on the battery caused by protrusions adhered on an electrode surface. The method of manufacturing an electrode for lithium secondary batteries includes depositing a thin film of active material on a current collector using thin-film deposition equipment as shown in FIG. 1, and performing a compression process after depositing the thin film, whereby the heights of protrusions formed on the electrode surface are reduced.
Abstract:
A rechargeable lithium battery including a negative electrode made by sintering, on a surface of a conductive metal foil as a current collector, a layer of a mixture of active material particles containing silicon and/or a silicon alloy and a binder, a positive electrode and a nonaqueous electrolyte, characterized in that the nonaqueous electrolyte contains carbon dioxide dissolved therein.
Abstract:
A method for fabricating an electrode for lithium secondary battery characterized by applying a tension to a metallic foil so as to pull an area of the metallic foil on which a thin film composed of active material is deposited, from the both sides in the direction of longitude, when depositing the thin film on the metallic foil serving as a current collector.