Abstract:
Provided is a copolymer of a conjugated diene compound and a non-conjugated olefin, the copolymer being a tapered copolymer including: at least one of a block sequence including monomer units of the conjugated diene compound and a block sequence including monomer units of the non-conjugated olefin; and a random sequence including randomly arranged monomer units of the conjugated diene compound and monomer units of the non-conjugated olefin.
Abstract:
Provided is a block copolymer of a conjugated diene compound and a non-conjugated olefin, a rubber composition including the block copolymer, a crosslinked rubber obtained by crosslinking the rubber composition, and a tire using the rubber composition or the crosslinked rubber composition. The copolymer of the present invention is a block copolymer of a conjugated diene compound and a non-conjugated olefin, the copolymer having a peak area in a temperature range in a range of 70° C. to 110° C. that accounts for at least 60% of a peak area in a range of 40° C. to 140° C. and a peak area in a range of 110° C. to 140° C. that accounts for 20% or less of a peak area in a range of 40° C. to 140° C., the peak areas being measured by the differential scanning calorimetry (DSC) according to JIS K 7121-1987.
Abstract translation:提供了共轭二烯化合物和非共轭烯烃的嵌段共聚物,包含嵌段共聚物的橡胶组合物,通过交联橡胶组合物获得的交联橡胶和使用橡胶组合物或交联橡胶组合物的轮胎。 本发明的共聚物是共轭二烯化合物和非共轭烯烃的嵌段共聚物,该共聚物的峰面积在70℃〜110℃的范围内至少占到了 在40℃至140℃的范围内的峰面积为60%,在110℃至140℃的范围内的峰面积为范围内的峰面积的20%以下 为40℃〜140℃,根据JIS K 7121-1987通过差示扫描量热法(DSC)测定峰面积。
Abstract:
The present invention provides a copolymer of a conjugated diene compound and a non-conjugated olefin that is used for manufacturing a rubber excellent in crack growth resistance, heat resistance and ozone resistance and that includes a cis-1,4 bond at a unit derived from the conjugated diene compound, a rubber composition containing the copolymer, a rubber composition for tire treads using the rubber composition for tire tread members, a crosslinked rubber composition obtained by crosslinking the rubber composition, and a tire using the rubber composition or the crosslinked rubber composition. In the copolymer of a conjugated diene compound and a non-conjugated olefin, the cis-1,4 bond content of a unit derived from the conjugated diene compound is more than 92%.
Abstract:
A method for preparing a functionalized polymer, the method comprising the steps of preparing a reactive polymer, and reacting the reactive polymer with a halosilane compound containing an amino group.
Abstract:
Provided is a copolymer of a conjugated diene compound and a non-conjugated olefin, the copolymer being a random copolymer including randomly arranged monomer units of the conjugated diene compound and of the non-conjugated olefin, in which the non-conjugated olefin is preferably an acyclic olefin, the non-conjugated olefin preferably has 2 to 10 carbon atoms, and specific examples of the non-conjugated olefin preferably include ethylene, propylene, and 1-butene.
Abstract:
Provided is a copolymer of a conjugated diene compound and a non-conjugated olefin, the copolymer being a tapered copolymer including: at least one of a block sequence including monomer units of the conjugated diene compound and a block sequence including monomer units of the non-conjugated olefin; and a random sequence including randomly arranged monomer units of the conjugated diene compound and monomer units of the non-conjugated olefin.
Abstract:
There are provided a rubber composition simultaneously improving low loss factor and wear resistance as compared with the conventional ones as well as a tire using such a rubber composition.The invention lies in a rubber composition using a modified conjugated diene rubber and being excellent in the low loss factor and wear resistance as well as a tire. The rubber composition of the invention is formed by compounding a filler to a rubber component containing (A) a modified conjugated diene rubber having a cis-bond content in conjugated diene portion of not less than 87% and a vinyl bond content of not more than 2% and containing a functional group reactive with a filler and (B) a modified polymer having a modifying functional group number per 1 molecule of an unmodified polymer of not less than 0.6.
Abstract:
This invention relates to a rubber composition being excellent in the low heat buildup and fracture properties (resistance to crack growth). and more particularly to a rubber composition, characterized by compounding 10-100 parts by mass of an inorganic filler and/or carbon black based on 100 parts by mass of a rubber component including not less than 10 mass % of a modified conjugated diene-based polymer having a cis-1,4 bond content of not less than 90% and a vinyl bond content of not more than 1.2% and a primary amino group. In this case, the modified conjugated diene-based polymer is obtained by (1) reacting the predetermined conjugated diene-based polymer having an active terminal with a compound having two or more predetermined functional groups and (2) further reacting the resulting product with a compound having a primary amino group.
Abstract:
This invention relates to an aromatic vinyl compound-conjugated diene compound copolymer capable of giving excellent wear resistance and resistance to wet skid to a tire, and more particularly to an aromatic vinyl compound-conjugated diene compound copolymer obtained by an addition polymerization of an aromatic vinyl compound and a conjugated diene compound in the presence of a polymerization catalyst composition comprising at least one specified metallocene complex selected from the group consisting of a metallocene complex represented by the following general formula (I): (wherein M is a lanthanoid element, scandium or yttrium, and CpR is independently a non-substituted or substituted indenyl, and Ra to Rf are independently an alkyl group having a carbon number of 1-3 or a hydrogen atom, and L is a neutral Lewis base, and w is an integer of 0-3) and so on, wherein a content of cis-1,4 bond in a conjugated diene compound portion is not less than 80%.
Abstract:
A simple, low cost drive circuit secures a sufficient number of subfields in a high resolution panel. The plasma display panel drive circuit groups plural sustain electrodes into first and second sustain electrode groups, and applies sustain pulses in the sustain period. The first and second sustain pulse generating circuits generate and apply sustain pulses to first and second electrode paths. First and second specific voltage application circuits apply a first specific voltage to the first and second electrode paths. The voltage selection circuit selects one of a plurality of voltages including at least a second specific voltage and a third specific voltage, and generates a selected voltage. The first and second sustain pulse generating circuits generate the sustain pulses based on the second specific voltage when the selected voltage is the second specific voltage, and when the selected voltage is the third specific voltage, apply the third specific voltage to the first and second electrode paths.