Abstract:
Semiconductor dies are mounted on a heat sink array frame structure. The heat sink array frame structure and the semiconductor dies are assembled together with an insulating substrate that has a corresponding array of apertures on an adhesive tape. The semiconductor dies are connected electrically with electrical contacts on the insulating substrate. The semiconductor dies, heat sinks and electrical connections to the contacts are encapsulated with a mold compound and then the encapsulated array is de-taped and singulated.
Abstract:
Semiconductor dies are mounted on a heat sink array frame structure. The heat sink array frame structure and the semiconductor dies are assembled together with an insulating substrate that has a corresponding array of apertures on an adhesive tape. The semiconductor dies are connected electrically with electrical contacts on the insulating substrate. The semiconductor dies, heat sinks and electrical connections to the contacts are encapsulated with a mold compound and then the encapsulated array is de-taped and singulated.
Abstract:
A method of assembling a semiconductor device includes providing a substrate having an array of substrate elements linked by substrate corner elements and separated by slots extending between the corner elements. Semiconductor dies are positioned on the substrate elements. A cap, frame and contact structure is provided that has a corresponding array of caps supported by corner legs linking the caps to frame corner elements, frame elements linking the frame corner elements, and sets of electrical contact elements supported by the frame elements. The cap, frame and contact structure is fitted on the substrate with the caps extending over corresponding dies, the frame corner elements extending over the substrate corner elements, and the sets of electrical contact elements disposed in the slots. The dies are connected electrically with the electrical contact elements and the assembly is encapsulated and singulated. Singulating removes the frame elements.
Abstract:
A no-lead type semiconductor package is formed by attaching a die to a top surface of a flag of a lead frame and then taping a bottom surface of the flag and leads of the lead frame. Die bonding pads are connected to the leads with wires and then the assembly is put in a mold chase and encapsulated with a plastic material. The mold chase has protrusions between the flag and the leads of a lead frame, and between the leads themselves, which causes indentations to be formed between the leads and between the flag and the leads. The method is particularly useful for making quad flat no lead (QFN) devices and power-QFN type devices.
Abstract:
Semiconductor dies are mounted on a heat sink array frame structure. The heat sink array frame structure and the semiconductor dies are assembled together with an insulating substrate that has a corresponding array of apertures on an adhesive tape. The semiconductor dies are connected electrically with electrical contacts on the insulating substrate. The semiconductor dies, heat sinks and electrical connections to the contacts are encapsulated with a mold compound and then the encapsulated array is de-taped and singulated.
Abstract:
A no-lead type semiconductor package is formed by attaching a die to a top surface of a flag of a lead frame and then taping a bottom surface of the flag and leads of the lead frame. Die bonding pads are connected to the leads with wires and then the assembly is put in a mold chase and encapsulated with a plastic material. The mold chase has protrusions between the flag and the leads of a lead frame, and between the leads themselves, which causes indentations to be formed between the leads and between the flag and the leads. The method is particularly useful for making quad flat no lead (QFN) devices and power-QFN type devices.
Abstract:
A lead frame including a lead frame structure having a die support area and a plurality of electrical contact areas has shallow recesses formed on a surface of the lead frame structure.
Abstract:
A method of assembling a semiconductor device includes providing a substrate having an array of substrate elements linked by substrate corner elements and separated by slots extending between the corner elements. Semiconductor dies are positioned on the substrate elements. A cap, frame and contact structure is provided that has a corresponding array of caps supported by corner legs linking the caps to frame corner elements, frame elements linking the frame corner elements, and sets of electrical contact elements supported by the frame elements. The cap, frame and contact structure is fitted on the substrate with the caps extending over corresponding dies, the frame corner elements extending over the substrate corner elements, and the sets of electrical contact elements disposed in the slots. The dies are connected electrically with the electrical contact elements and the assembly is encapsulated and singulated. Singulating removes the frame elements.
Abstract:
A semiconductor device includes a semiconductor die having first and second opposing faces and an edge surface. The edge surface has an undercut under the first face. The second face of the semiconductor die is bonded to a bonding surface of a die support member, such as a thermally conductive flag of a lead frame, with a die attach material. A fillet of the bonding material is formed within the undercut.
Abstract:
A method of assembling semiconductor devices includes placing an array of semiconductor dies on a die support. A cap array structure is provided that has a corresponding array of caps supported by a cap frame structure. The cap array structure and the array of semiconductor dies on the die support are aligned, with the caps extending over corresponding semiconductor dies, in a mold chase. The array of semiconductor dies and the array of caps are encapsulated with a molding compound in the mold chase. The encapsulated units of the semiconductor dies with the corresponding caps are removed from the mold chase and singulated. Singulating the encapsulated units may include removing the cap frame structure from the encapsulated units.