Abstract:
A lithographic apparatus includes a level sensor for use in positioning a target portion of the substrate with respect to a focal plane of the projection system, a pair of actuators, configured to move a substrate table of the lithographic apparatus, and a controller for moving the substrate relative to the level sensor by controlling the actuators. The controller combines motions of the first and second actuators to produce a combined movement having a speed higher than a maximum speed of at least one of the actuators individually.
Abstract:
A laser component purge system for discharge lasers. The LNP, the output coupler and the wavemeter are contained in sealed chambers each having a purge inlet port and a purge outlet port. Purge gas such as N2 is directed to each of the inlet ports. A purge monitoring system is provided which monitors the purge flow and provides one or more signals to a processor which is programmed to minimize laser timeouts attributable to purge conditions without endangering the purged optical components. In a preferred embodiment, gas exiting the outlet ports are directed to flow monitors which provide the one or more signals to the processor. Purge gas may be exhausted or recirculated.
Abstract:
A lithographic apparatus includes a level sensor for use in positioning a target portion of the substrate with respect to a focal plane of the projection system, a pair of actuators, configured to move a substrate table of the lithographic apparatus, and a controller for moving the substrate relative to the level sensor by controlling the actuators. The controller combines motions of the first and second actuators to produce a combined movement having a speed higher than a maximum speed of at least one of the actuators individually.