Abstract:
An intravascular stent and method for inhibiting restenosis, following vascular injury, is disclosed. The stent has an expandable, linked-filament body and a drug-release coating formed on the stent-body filaments, for contacting the vessel injury site when the stent is placed in-situ in an expanded condition. The coating releases, for a period of at least 4 weeks, a restenosis-inhibiting amount of a monocyclic triene immunosuppressive compound having an alkyl group substituent at carbon position 40 in the compound. The stent, when used to treat a vascular injury, gives good protection against clinical restenosis, even when the extent of vascular injury involves vessel overstretching by more than 30% diameter. Also disclosed is a stent having a drug-release coating composed of (i) 10 and 60 weight percent poly-dl-Iactide polymer substrate and (ii) 40-90 weight percent of an anti-restenosis compound, and a polymer undercoat having a thickness of between 1-5 microns.
Abstract:
An improvement in drug-eluting stents, and method of their making, are disclosed. The surface of a metal stent is roughened to have a surface roughness of at least about 20 μin (0.5 μm) and a surface roughness range of between about 300-700 μin (7.5-17.5 μm). The roughened stent surface is covered with a polymer-free coating of a limus drug, to a coating thickness greater than the range of surface roughness of the roughened stent surface.
Abstract:
A biodegradable polymer stent with radiopacity and a method of making and using a stent with enhanced mechanical strength and/or controlled degradation for use in a bodily lumen is described.
Abstract:
An improvement in drug-eluting stents, and method of their making are disclosed. The surface of a metal stent is roughened to have a surface roughness of at least about 20 μin (0.5 μm) and a surface roughness range of between about 300-700 μin (7.5-17.5 μm). The roughened stent surface is covered with a polymer-free coating of a limus drug, to a coating thickness greater than the range of surface roughness of the roughened stent surface.
Abstract:
A sensor for measuring fluid concentrations or the temperature of body. A fiber-optic catheter having a fluorometric sensor attached at a distal end is excited by a light source outside the body. The sensor fluoresces with an intensity or with a lifetime related to the concentration of the fluid or the temperature. The catheter has one light pipe for exciting the sensor and a second light pipe for generating a reference signal to calibrate signals from the fluorometric sensor. One embodiment has two sensors that fluoresce with different intensities and lifetimes to simultaneously give information about both the temperature and the fluid concentration.
Abstract:
An intravascular stent and method for inhibiting restenosis, following vascular injury, is disclosed. The stent has an expandable, linked-filament body and a drug-release coating formed on the stent-body filaments, for contacting the vessel injury site when the stent is placed in-situ in an expanded condition. The coating releases, for a period of at least 4 weeks, a restenosis-inhibiting amount of a monocyclic triene immunosuppressive compound having an alkyl group substituent at carbon position 40 in the compound. The stent, when used to treat a vascular injury, gives good protection against clinical restenosis, even when the extent of vascular injury involves vessel overstretching by more than 30% diameter. Also disclosed is a stent having a drug-release coating composed of (i) 10 and 60 weight percent poly-dl-Iactide polymer substrate and (ii) 40-90 weight percent of an anti-restenosis compound, and a polymer undercoat having a thickness of between 1-5 microns.
Abstract:
An intravascular stent and method for inhibiting restenosis, following vascular injury, is disclosed. The stent has an expandable, linked-filament body and a drug-release coating formed on the stent-body filaments, for contacting the vessel injury site when the stent is placed in-situ in an expanded condition. The coating releases, for a period of at least 4 weeks, a restenosis-inhibiting amount of the macrocyclic triene immunosuppressive compound everolimus. The stent, when used to treat a vascular injury, gives good protection against clinical restenosis, even when the extent of vascular injury involves vessel overstretching by more than 30% diameter. Also disclosed is a stent having a drug-release coating composed of (i) 10 and 60 weight percent poly-dl-lactide polymer substrate and (ii) 40-90 weight percent of an anti-restenosis compound, and a polymer undercoat having a thickness of between 1-5 microns.
Abstract:
A biodegradable polymer stent with radiopacity and a method of making and using a stent with enhanced mechanical strength and/or controlled degradation for use in a bodily lumen is described.
Abstract:
A radially expandable, endovascular stent designed for placement at a site of vascular injury, for inhibiting restenosis at the site, a method of using, and a method of making the stent. The stent includes a radially expandable body formed of one or more metallic filaments where at least one surface of the filaments has a roughened or abraded surface. The stent may include a therapeutic agent on the abraded surface.