Abstract:
An apparatus and method of use are disclosed to treat urological disorders. The biocompatible device includes a handle, needle, dilator and sling assembly configured to be minimally invasive and provide sufficient support to the target site. In addition, the configuration of the sling assembly also allows the sling to be adjusted during and/or after implantation. The device and treatment procedure are highly effective and produce little to no side effects or complications. Further, operative risks, pain, infections and post operative stays are reduced, thereby improving patient quality of life.
Abstract:
A surgical instrument for suturing soft tissue is disclosed. The surgical instrument is capable of probing tissue, and preferably provides tactile feedback concerning the condition of the tissue. The instrument can then be used to pass and retrieve a suture without the need for an additional suture retrieval tool.
Abstract:
An apparatus and method of use are disclosed to treat urological disorders. The biocompatible device includes a handle, needle, dilator and sling assembly configured to be minimally invasive and provide sufficient support to the target site. In addition, the configuration of the sling assembly also allows the sling to be adjusted during and/or after implantation. The device and treatment procedure are highly effective and produce little to no side effects or complications. Further, operative risks, pain, infections and post operative stays are reduced, thereby improving patient quality of life.
Abstract:
An apparatus and method of use are disclosed to treat urological disorders. The invention is a repositionable handle for an arcuate needle configured to be minimally invasive. The invention is for use with a sling assembly that allows a sling to be controllably implanted in a therapeutically effective position. The device and treatment procedure are highly effective and produce little to no side effects or complications. Further, operative risks, pain, infections and post operative stays are reduced.
Abstract:
An implantable sensing device includes a sensing element and a mounting element. The mounting element has a first end and a second end with a longitudinal axis therethrough. The sensing element is positioned at the first end of the mounting element with the mounting element having a length that is adjustable along the longitudinal axis. The mounting element includes a sleeve having a first open end and a second open end with the longitudinal axis therethrough. The sensing element is positioned in the second open end and includes a lead body connected thereto extending through the second open end. The sleeve includes an outer sleeve member coupled for adjustment along the longitudinal axis with respect to an inner sleeve member. Further, the mounting element may include a flexible element about the first open end extending outwardly relative to the longitudinal axis and a flange element extending outwardly relative to the longitudinal axis from at least a portion of the second end. The device can be implanted in a bone with the flange element and the flexible element for direct or indirect contact with the anterior and posterior surface of the bone. A method of implanting the sensor includes providing a sensing element and drilling a hole in a bone. The hole extends to the intrathoracic cavity. The sensing element is inserted into the hole and positioned in communication with a region in the intrathoracic cavity. The hole is drilled in the manubrium. When the flexible element is inserted into the hole, the flexible element about the first open end collapses towards the longitudinal axis and when the sensor mounting assembly is removed from the hole, the flexible element collapses towards the longitudinal axis during removal. Methods for providing stimulation of a patient to treat respiratory disorders using the sensor are also provided as are stimulation systems for providing stimulation of a patient to treat respiratory disorders.
Abstract:
A cardiac assist device having muscle augmentation after a confirmed arrhythmia. In particular the present invention operates, in a first embodiment, to sense a cardiac event, next it determines whether the cardiac event is a cardiac arrhythmia, if the event is not a cardiac arrhythmia the devices delivers stimulation to a skeletal muscle grafted about a heart, but if the event is a cardiac arrhythmia the device inhibits delivery of skeletal muscle stimulation and once the arrhythmia is confirmed, then delivers therapeutic stimulation to the heart. In a second embodiment the present invention operates to re-initiate skeletal muscle stimulation once the arrhythmia is confirmed but prior to the delivery of the therapeutic stimulation to the heart.
Abstract:
A minimally invasive surgical instrument for placing an implantable article about a tubular tissue structure is disclosed. The surgical instrument is particularly useful for treating urological disorders such as incontinence. Surgical methods using the novel instrument are also described.
Abstract:
A needleless injector including a body at a proximal end, a shaft extending distally from the body, at least one injection orifice at a distal end of the shaft in fluid communication with a fluid chamber at the proximal end, a pressure source in communication with the fluid chamber, and a tissue tensioner located at the distal end of the shaft proximal to the injection orifice, wherein the distal end including the tissue tensioner and injection orifice is positionable within a urethral lumen so that when the tissue tensioner is deployed, tissue of the urethra is tensioned at a location for injection of fluid from the injection orifice into the tissue of the urethra.