Abstract:
A posterior vertebral stabilizer has a resilient member such as a linear spring, which operates in tension and compression. The resilient member may be kept straight by a stabilization rod extending through the spring, or by a telescoping assembly that encases the resilient member. The ends of the stabilizer are attachable to pedicles of adjacent vertebrae so that the stabilizer adds stiffness to control flexion and extension of the vertebrae. Two such stabilizers may be used, and may be connected together by a crosslink designed to limit relative rotation of the stabilizers. Thus, the stabilizers may restrict axial rotation and lateral bending between the vertebrae, while permitting stiffened flexion and extension. Such stabilizers help provide the stiffness of a healthy intervertebral disc. In the event that fusion of the joint becomes necessary, a set screw or other component may be used to further restrict flexion and extension.
Abstract:
A frame is attachable to first and second bone portions of a patient to facilitate measurement and resection of one or more bony landmarks. The frame has two anchoring features, each of which has a semispherical surface that permits rotational adjustment of the frame against the bone portions until the frame is secured. A bridging structure couples the anchoring features together such that the anchoring features are lockably movable with respect to each other. The bridging structure may have three linear sliders that provide the relative motion. A locking mechanism exerts pressure on all three sliders to lock them in place. An external anchoring feature enables attachment of the frame to a stationary reference to stabilize the frame. The frame also has registration features that permit attachment of measurement or resection tools to the frame. The frame is particularly useful for measuring and resecting spinal facets for facet replacement.
Abstract:
A posterior vertebral stabilizer has a resilient member such as a linear spring, which operates in tension and compression. The resilient member may be kept straight by a stabilization rod extending through the spring, or by a telescoping assembly that encases the resilient member. The ends of the stabilizer are attachable to pedicles of adjacent vertebrae so that the stabilizer adds stiffness to control flexion and extension of the vertebrae. Two such stabilizers may be used, and may be connected together by a crosslink designed to limit relative rotation of the stabilizers. Thus, the stabilizers may restrict axial rotation and lateral bending between the vertebrae, while permitting stiffened flexion and extension. Such stabilizers help provide the stiffness of a healthy intervertebral disc. In the event that fusion of the joint becomes necessary, a set screw or other component may be used to further restrict flexion and extension.
Abstract:
A method for mounting a tibial condylar implant includes forming a tunnel having a proximal end on a lateral, medial, or anterior side of a proximal end of the tibia and a distal end on an at least partially resected lateral or medial facet at the proximal end of the tibia. A condylar implant is positioned over the distal end of the tunnel. A fastener is advanced into the tunnel from the proximal end of the tunnel. The fastener which is at least partially disposed within the tunnel is secured to the condylar implant.
Abstract:
A method for resecting at least a portion of a lateral or medial facet at the proximal end of a tibia includes forming a tunnel having a proximal end on a lateral, medial, or anterior side of a proximal end of a tibia and a distal end on a lateral or medial facet at the proximal end of the tibia. A first end of a retention rod is advanced from the proximal end of the tunnel to the distal end of the tunnel. The first end of the retention rod is coupled to a rasp. At least the rasp or the retention rod is moved so as to cause the rasp to resect at least a portion of the lateral or medial facet of the tibia.
Abstract:
A posterior vertebral stabilizer has a resilient member such as a linear spring, which operates in tension and compression. The resilient member may be kept straight by a stabilization rod extending through the spring, or by a telescoping assembly that encases the resilient member. The ends of the stabilizer are attachable to pedicles of adjacent vertebrae so that the stabilizer adds stiffness to control flexion and extension of the vertebrae. Two such stabilizers may be used, and may be connected together by a crosslink designed to limit relative rotation of the stabilizers. Thus, the stabilizers may restrict axial rotation and lateral bending between the vertebrae, while permitting stiffened flexion and extension. Such stabilizers help provide the stiffness of a healthy intervertebral disc. In the event that fusion of the joint becomes necessary, a set screw or other component may be used to further restrict flexion and extension.
Abstract:
A method for mounting a tibial condylar implant includes forming a tunnel having a proximal end on a lateral, medial, or anterior side of a proximal end of the tibia and a distal end on an at least partially resected lateral or medial facet at the proximal end of the tibia. A condylar implant is positioned over the distal end of the tunnel. A fastener is advanced into the tunnel from the proximal end of the tunnel. The fastener which is at least partially disposed within the tunnel is secured to the condylar implant.
Abstract:
A system and method facilitate insertion of a fusion implant into the intervertebral space of a spine. The fusion implant may have a first bone engaging surface and a second bone engaging surface. An attachment interface on an insertion tool allows the implant to be releasably secured to the insertion tool, so that the insertion tool may be detached from the implant without requiring a threaded coupling. The implant may be positioned in two different orientations with respect to the insertion tool to permit usage of two different techniques to insert the implant into the intervertebral space. A recessed support member in the implant creates gaps between bone facing surfaces and the vertebral bodies such that bone graft material may occupy the gaps. The implant includes embedded radiographic markers which facilitate radiographic detection of the orientation of the implant through the surrounding tissue.
Abstract:
An implant for resurfacing at least a portion of an articulation surface of a bone includes a body having a first side with a top articular surface and an opposing second side with a bone apposition surface. The bone apposition surface is adapted to bias against a natural or resected articulation surface of a bone. An elongated flexible first line is coupled to and extends from the body.
Abstract:
A frame is attachable to first and second bone portions of a patient to facilitate measurement and resection of one or more bony landmarks. The frame has two anchoring features, each of which has a semispherical surface that permits rotational adjustment of the frame against the bone portions until the frame is secured. A bridging structure couples the anchoring features together such that the anchoring features are lockably movable with respect to each other. The bridging structure may have three linear sliders that provide the relative motion. A locking mechanism exerts pressure on all three sliders to lock them in place. An external anchoring feature enables attachment of the frame to a stationary reference to stabilize the frame. The frame also has registration features that permit attachment of measurement or resection tools to the frame. The frame is particularly useful for measuring and resecting spinal facets for facet replacement.