摘要:
A temperature sensor is formed by mounting a force-sensitive resonator on a resilient or non-resilient base structure, preferably in an enclosure such that thermally induced expansions or contractions of the base structure apply a stress to the resonator. The resonant frequency of the resonator is measured to provide an indication of the temperature of the base structure and resonator.
摘要:
A mounting structure for crystal resonators used as frequency standards and transducers which maximizes performance and reduces the sensitivity to environmental errors. In one embodiment, force sensitive crystal resonators having inherent unmounted temperature sensitivities are used in conjunction with reactive spring-like mounting arrangements having predetermined temperature stress characteristics such that the thermally induced mechanical stress of the mounting arrangements changes, compensates, and optimizes the overall combined temperature characteristics. In another embodiment crystal resonators are isolated from the external environment so that they are capable of sensing forces while operating in a vacuum or inert atmosphere. Environmental isolation is provided by bellows and/or diaphragm arrangements used alone or in conjunction with air-tight enclosures which enable forces to be applied to stress-sensitive crystals while isolating the crystals from the external force producing environment.
摘要:
A digital differential pressure transducer with relatively low sensitivity to common mode line pressure errors. The transducer includes an airtight enclosure having a pair of pressure ports through which pressure is coupled to opposite sides of a pressure-sensing diaphragm or bellows. The force generated by the pressure differential across the diaphragm or bellows is coupled to a stress-sensitive resonator either directly or through a force-transmitting structure. A first bellows extends from the diaphragm or a bellows end cap. The first bellows has an effective area which is substantially smaller than the effective area of the pressure-sensing diaphragm or bellows so that it applies substantially less pressure-induced stress to the resonator than does the pressure-sensing diaphragm or bellows. A second bellows has an effective area and a mounting position chosen to counteract the effect of the first bellows on the pressure-sensing diaphragm or bellows. The common mode line pressure error of the transducer resulting from a mismatch between the forces generated by the first and second bellows is thus proportional to the ratio of the effective area of the first bellows to the effective area of the pressure-sensing diaphragm or bellows. This ratio can be minimized to minimize the common mode line pressure error. The first and second bellows encapsulate or surround either the resonator or a portion of the force-transmitting structure to isolate the resonator from the pressure ports, thereby optimizing the performance of the resonator.
摘要:
A triaxial acceleration sensor comprises an inertial mass suspended in three orthogonal directions by support members in a statically determinate structure. Acceleration applied to the inertial mass generates loading forces that stress the support members either in tension or in compression. The stress levels are thus a measure of the applied acceleration. In an embodiment of this invention, the support members are force-sensitive resonators whose resonant frequencies of oscillation are related to the stresses in the members. The resonant frequencies are thus a measure of the complete three-dimensional vector of the applied acceleration.
摘要:
Digital pressure transducers employing force-sensitive resonators are designed according to a method that eliminates spurious mode resonances. The dimensional and geometrical relationships of the force-producing pressure elements and structures are chosen such that spurious modes of oscillation are not excited by the resonant modes of the force-sensitive resonators.
摘要:
A mounting structure for double-bar resonators to ensure symmetrical loading of the resonator responsive to external forces. In one embodiment, the resonator is connected to a pair of mounting pads through compliant coupling members. The coupling members allow longitudinal, force-induced displacements of the mounting pads to load the resonator while making the resonator insensitive to spurious transverse displacements of the mounting pads. In another embodiment, a force is applied to a load-sensitive, double-bar resonator through a force-transmitting bar which is mounted on an elongated flexure hinge. The hinge is compliant about an axis of rotation which is perpendicular to the longitudinal axis of the resonator so that the hinge attenuates any force component acting perpendicular to the longitudinal axis of the resonator which would otherwise non-symmetrically load the resonator.
摘要:
A system for isolating the mounting pads of a vibrating beam or tuning fork force transducers from longitudinal vibrations generated by transverse vibrations of the beam or tuning fork tines which extend between the mounting pads. The system includes an arrangement of longitudinally resilient support links and masses that flex responsive to change in the length of the beam or tines as the beam or tines vibrate transversely. The support links and masses thus isolate the mounting pads from the longitudinally vibrations of the beam or tuning fork tines while allowing transmission of forces applied between the mounting pads which vary the force dependent resonant frequency of the beam or tuning fork.
摘要:
A high-resolution digital seismic and gravity sensor includes an inertial mass connected to one or more force-sensitive resonators. The weight of the inertial mass is substantially unloaded with a spring arrangement when exposed to the force of the static gravity field. Seismic accelerations applied to the base of the seismic and gravity sensor, or changes in the gravitational field, generate loads that are transmitted to force-sensitive resonators so that changes in resonant frequency are related to the applied load. The changes in resonant frequency are thus a measure of the seismic accelerations and gravitational field variations.
摘要:
A high-resolution digital seismic and gravity sensor includes an inertial mass connected to one or more force-sensitive resonators. The weight of the inertial mass is substantially unloaded with a spring arrangement when exposed to the force of the static gravity field. Seismic accelerations applied to the base of the seismic and gravity sensor, or changes in the gravitational field, generate loads that are transmitted to force-sensitive resonators so that changes in resonant frequency are related to the applied load. The changes in resonant frequency are thus a measure of the seismic accelerations and gravitational field variations.
摘要:
A temperature sensor is formed by mounting a force-sensitive resonator on a resilient or non-resilient base structure, preferably in an enclosure such that thermally induced expansions or contractions of the base structure apply a stress to the resonator. The resonant frequency of the resonator is measured to provide an indication of the temperature of the base structure and resonator.