摘要:
The present invention relates to novel hexacoordinated metathesis catalysts and to methods for making and using the same. The inventive catalysts are of the formula wherein: M is ruthenium or osmium; X and X1 are the same or different and are each independently an anionic ligand; L, L1′ and L2 are the same or different and are each independently a neutral electron donor ligand, wherein at least one L, L1′ and L2 is an N-heterocyclic carbene ligand; and, R and R1 are each independently hydrogen or a substituent selected from the group consisting of C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, aryl, C1-C20 carboxylate, C1-C20 alkoxy, C2-C20 alkenyloxy, C2-C20 alkynyloxy, aryloxy, C2-C20 alkoxycarbonyl, C1-C20 alkylthio, C1-C20 alkylsulfonyl and C1-C20 alkylsulfinyl. Optionally, each of the R or R1 substituent group may be substituted with one or more moieties selected from the group consisting of C1-C10 alkyl, C1-C10 alkoxy, and aryl which in turn may each be further substituted with one or more groups selected from a halogen, a C1-C5 alkyl, C1-C5 alkoxy, and phenyl. Moreover, any of the catalyst ligands may further include one or more functional groups. Examples of suitable functional groups include but are not limited to: hydroxyl, thiol, thioether, ketone, aldehyde, ester, ether, amine, imine, amide, nitro, carboxylic acid, disulfide, carbonate, isocyanate, carbodiimide, carboalkoxy, carbamate, and halogen.
摘要:
The invention pertains to the use of Group 8 transition metal alkylidene complexes as catalysts for olefin cross-metathesis reactions. In particular, ruthenium and osmium alkylidene complexes substituted with an N-heterocyclic carbene ligand and at least one electron donor ligand in the form of a heterocyclic group are used to catalyze cross-metathesis reactions to provide a olefin products that are directly substituted with an electron-withdrawing group.
摘要:
The present invention relates to novel hexacoordinated metathesis catalysts and to methods for making and using the same. The inventive catalysts are of the formula wherein: M is ruthenium or osmium; X and X1 are the same or different and are each independently an anionic ligand; L, L1′ and L2 are the same or different and are each independently a neutral electron donor ligand; and, R and R1 are each independently hydrogen or a substituent selected from the group consisting of C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, aryl, C1-C20 carboxylate, C1-C20 alkoxy, C2-C20 alkenyloxy, C2-C20 alkynyloxy, aryloxy, C2-C20 alkoxycarbonyl, C1-C20 alkylthio, C1-C20 alkylsulfonyl and C1-C20 alkylsulfinyl and silyl. Optionally, each of the R or R1 substituent group may be substituted with one or more moieties selected from the group consisting of C1-C10 alkyl, C1-C10 alkoxy, and aryl which in turn may each be further substituted with one or more groups selected from a halogen, a C1-C5 alkyl, C1-C5 alkoxy, and phenyl. Moreover, any of the catalyst ligands may further include one or more functional groups. Examples of suitable functional groups include but are not limited to: hydroxyl, thiol, thioether, ketone, aldehyde, ester, ether, amine, imine, amide, nitro, carboxylic acid, disulfide, carbonate, isocyanate, carbodiimide, carboalkoxy, carbamate, halogen, alcohol, sulfonic acid, phosphine, imide, acetal, ketal, boronate, cyano, cyanohydrin, hydrazine, enamine, sulfone, sulfide, and sulfenyl. In certain embodiments, at least one of L, L1′ and L2 is an N-heterocyclic carbene ligand.