Abstract:
Polymer fibers having therein at least one infrared attenuating agent is provided. The infrared attenuating agent is at least substantially evenly distributed throughout the polymeric material forming the polymer fibers. In exemplary embodiments, the infrared attenuating agents have a thickness in at least one dimension of less than about 100 nanometers. Alternatively, the polymer fibers are bicomponent fibers formed of a core and a sheath substantially surrounding the core and the infrared attenuating agent is at least substantially evenly distributed throughout the sheath. The modified polymer fibers may be used to form insulation products that utilize less polymer material and subsequently reduce manufacturing costs. The insulation products formed with the modified polymers have improved thermal properties compared to insulation products formed of only non-modified polymer fibers. Additionally, the insulation product is compatible with bio-based binders. Methods of forming the modified polymer fibers and insulation products are also provided.
Abstract:
A fibrous blanket material is provided having a first fibrous layer selected from a group of fibers consisting of polyester, polypropylene, polyethylene, fiberglass, natural fibers, nylon, rayon and blends thereof and a layer of meltblown polypropylene fibers. In an alternative embodiment the blanket may also include a second fibrous layer made of the same material as the first layer where the layer of meltblown polypropylene fibers is sandwiched between the two fibrous layers.
Abstract:
A fibrous blanket material is provided having a first fibrous layer selected from a group of fibers consisting of polyester, polypropylene, polyethylene, fiberglass, natural fibers, nylon, rayon and blends thereof and a layer of meltblown polypropylene fibers. In an alternative embodiment the blanket may also include a second fibrous layer made of the same material as the first layer where the layer of meltblown polypropylene fibers is sandwiched between the two fibrous layers.
Abstract:
An under carpet heat shield/floor pan insulator is provided for a vehicle. The shield/insulator includes an acoustical and thermal insulating layer of polymer fiber that shows no signs of any thickness increase, delamination, deterioration or any undesirable effect which may affect performance for at least 330 hours when maintained at a temperature of at least approximately 150° C. The shield/insulator may include a relatively high density, nonlaminate skin of polymer fiber and/or one or more facing layers constructed from polymer material.
Abstract:
A hood, dash, firewall or engine cover liner is provided for a vehicle. The liner includes a nonlaminate acoustical and thermal insulating layer of polymer fiber that shows no signs of any thickness increase, delamination, deterioration or any undesirable effect which may affect performance for at least 330 hours when maintained at a temperature of at least approximately 150° C. The liner may include a relatively high density, nonlaminate skin of polymer fiber and/or one or more facing layers constructed from polymer material.
Abstract:
A decorative panel includes a body constructed from a single layer of a polymer based blanket material having a surface zone. Printing is directly applied to an exposed face of that surface zone. The surface zone may be densified relative to the remainder of the body to tune the acoustical and physical properties of the panel for a particular application and/or to allow for high definition printing.
Abstract:
A fibrous blanket material is provided having a first fibrous layer selected from a group of fibers consisting of polyester, polypropylene, polyethylene, fiberglass, natural fibers, nylon, rayon and blends thereof and a layer of meltblown polypropylene fibers. In an alternative embodiment the blanket may also include a second fibrous layer made of the same material as the first layer where the layer of meltblown polypropylene fibers is sandwiched between the two fibrous layers.
Abstract:
A trim panel insulator is provided for a vehicle. The insulator includes a nonlaminate acoustical and thermal insulating layer of polymer fiber. The insulator may include a relatively high density, nonlaminate skin of polymer fiber and/or one or more facing layers constructed from various materials.
Abstract:
An acoustical diffuser is disclosed for diffusing sound. A preferred diffuser includes a first fibrous material, a first separator layer, a diffuser material a second separator layer, a second fibrous material and an acoustically transparent material. The subject invention also includes a preferred method of molding such diffuser. The subject invention further includes a panel that has an acoustically reflective side and an acoustically transparent side over a frequency range that can be attached to the walls of a room to enhance the acoustical characteristics of the room. A preferred method of installing such panels includes installing fabric retainer members to the walls between the panels and attaching an acoustically transparent material to the fabric retainer members such that the panels and fabric retainers are covered by the acoustically transparent material. The panels may preferably be arranged such that acoustically reflective surfaces on one wall oppose acoustically absorptive surfaces on another opposing wall. Preferably, panels are attached to the walls such that the acoustically absorptive surfaces thereof are facing the room interior where the walls abut each other to form corners. An acoustical built-in wall system and an acoustical door and method of applying an acoustical treatment to a door are also disclosed.
Abstract:
A method for applying adhesive on a porous substrate with improved bonding between the adhesive and the substrate. The adhesive is applied on a surface of the substrate. The applied adhesive is impinged with a fluid such as air to force a first portion of the adhesive to flow and penetrate the substrate while a second portion of the adhesive remains on the surface.