Abstract:
The invention is directed to isolated genomic polynucleotide fragments that encode human resistin and human syntaxin binding protein 2, vectors and hosts containing these fragments and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments. The invention is further directed to methods of using these fragments to obtain human resistin and human syntaxin binding protein 2 and to diagnose, treat, prevent and/or ameliorate a pathological disorder.
Abstract:
The invention is directed to isolated genomic polynucleotide fragments that encode human carboxypeptidase M and human mouse double minute 2 homolog, vectors and hosts containing these fragments and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments. The invention is further directed to methods of using these fragments to obtain human carboxypeptidase M and human mouse double minute 2 homolog and to diagnose, treat, prevent and/or ameliorate a pathological disorder.
Abstract:
The invention is directed to isolated genomic polynucleotide fragments that encode human SNARE YKT6, human glucokinase, human adipocyte enhancer binding protein (AEBP1) and DNA directed 50 kD regulatory subunit (POLD2), vectors and hosts containing these fragments and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments. The invention is further directed to methods of using these fragments to obtain SNARE YKT6, human glucokinase, AEBP1 protein and POLD2 and to diagnose, treat, prevent and/or ameliorate a pathological disorder.
Abstract:
The invention is directed to isolated genomic polynucleotide fragments that encode human SNARE YKT6, human glucokinase, human adipocyte enhancer binding protein (AEBP1) and DNA directed 50 kD regulatory subunit (POLD2), vectors and hosts containing these fragments and fragments hybridizing to noncoding regions as well as antisense oligonucleotides to these fragments. The invention is further directed to methods of using these fragments to obtain SNARE YKT6, human glucokinase, AEBP1 protein and POLD2 and to diagnose, treat, prevent and/or ameliorate a pathological disorder.
Abstract:
Novel thiolester compounds are disclosed which are orally effective angiotensin converting enzyme inhibitors useful in the treatment of mammalian hypertension. They have the formula,R.sub.1 -A.sub.1 -S-Z,wherein Z denotes -B-A.sub.2, R.sub.1 is H or an acyl group, A.sub.1 is a carboxylic acid containing at least one amino or imino -N-, A.sub.2 is a carboxylic acid containing at least one amino or imino -N- or a lower alkyl ester or amide thereof, B is a 2-4 carbon backbone chain in mercapto linkage to S which includes a carbonyl or sulfonyl group joined in carboxamido or sulfonamido linkage, respectively, to A.sub.2.Preferably A.sub.2 includes a 4-6 membered C-N ring or a 5 membered ring of one N, one S and 3 C atoms.
Abstract:
Novel compounds are disclosed as potent inhibitors of angiotensin converting enzyme and as orally effective antihypertensive agents. The compounds have the general formula: ##STR1##
Abstract:
Inhibitors of angiotensin converting enzyme which are physiologically acceptable salts of compounds which have the formula: ##STR1## wherein R is hydrogen, formyl, acetyl, propanoyl, butanoyl, phenylacetyl, phenylpropanoyl, benzoyl, cyclopentanecarbonyl, tert-butyloxycarbonyl, cyclopentanecarbonyl-L-lysyl, pyro-L-glutamyl-L-lysyl, L-lysyl, L-arginyl or pyro-L-glutamyl;A is phenylalanyl, glycyl, alanyl, tryptophyl, tyrosyl, isoleucyl, leucyl, histidyl, or valyl, the .alpha.-amino group thereof being in amide linkage with R;R.sub.1 is hydrogen or methyl;R.sub.2 is L-proline, L-3,4-dehydroproline, D,L-3,4-dehydroproline, L-3-hydroxyproline, L-4-hydroxyproline, L-thiazolidine-4-carboxylic acid, or L-5-oxo-proline, the imino group thereof being in imide linkage with the adjacent ##STR2## and, n is 0 or 1, such that when n is O, R.sub.1 is methyl are disclosed as useful anti-hypertensive agents.
Abstract:
A rapid, efficient and accurate method is provided for quantitatively assaying for an enzyme, such as angiotensin converting enzyme, an aminopeptidase, a carboxypeptidase, or trypsin, which catalyzes hydrolysis of a radiolabelled substrate to produce a radiolabelled remnant product preferentially soluble in a water-immiscible organic solvent, whereby the assay is conducted in a vial having a volume of not more than 20 milliliters, preferably 7 ml. or less, by incubating substrate in buffer and sample, stopping the reaction after a predetermined time with, e.g., acid or base, adding the water-immiscible organic solvent containing scintillant, capping the vial, mixing by inverting the vial whereupon a spontaneous phase separation occurs. The radioactivity of the organic phase is then counted in an appropriate scintillation counter and the enzymic activity is thereupon calculated.
Abstract:
A method for measuring the activity of angiotensin converting enzyme is disclosed. In this assay, benzoylphenylalanylalanyproline or a radioisotope labelled form thereof is used as the substrate for the angiotensin converting enzyme.