Abstract:
A flexible OLED is provided on a flexible substrate. The flexible substrate has at least cut region. The substrate is expandable due to the separation of the flexible substrate at the cut region that is accommodated by bending of the flexible substrate. The substrate on which the flexible OLED is deposited on may be expanded without plastic deformation.
Abstract:
Devices comprising multiple flexible substrates bearing OLEDs are provided. The flexible substrates are interconnected, and the properties of the substrates and the interconnections provide the shape of the device.
Abstract:
Flexible substrates bearing OLEDs are provided. The flexible substrates are attached to support structures that, when moved, cause the flexible structures to change shape and to thereby change the distribution of radiant intensity emanating from the OLEDs on the flexible substrates.
Abstract:
A method for accelerated life testing of organic devices is provided. The lifetime of each of one or more individual organic emissive devices is measured at a non-heating current density. Based upon the measured lifetimes of the one or more devices, the device lifetime is determined for a selected luminance. An organic emissive panel is also obtained having a second organic stack that consists essentially of the one or more organic layers of the first organic stack. The junction temperature of the organic emissive panel is then determined at a heating current density. Based upon the junction temperature and the device lifetime of the one or more individual organic emissive devices, the expected lifetime of the organic emissive panel is then determined at the heating current density.
Abstract:
Systems and methods for the design and fabrication of OLEDs, including high-performance large-area OLEDs, are provided. Variously described fabrication processes may be used to deposit and pattern bus lines with a smooth profile and a gradual sidewall transition. Such smooth profiles may, for example, reduce the probability of electrical shorting at the bus lines. Accordingly, in certain circumstances, an insulating layer may no longer be considered essential, and may be optionally avoided altogether. In cases where an insulating layer is not used, further enhancements in the emissive area and shelf life of the device may be achieved as well. According to aspects of the invention, bus lines such as those described herein may be deposited, and patterned, using vapor deposition such as vacuum thermal evaporation (VTE) through a shadow mask, and may avoid multiple photolithography steps. Other vapor deposition systems and methods may include, among others, sputter deposition, e-beam evaporation and chemical vapor deposition (CVD). A final profile of the bus line may substantially correspond to the profile as deposited.
Abstract:
A method for accelerated life testing of organic devices, and in particular large area organic emissive devices, is provided. The first method comprises obtaining one or more individual organic emissive devices, each having a first organic stack comprising one or more organic layers. The lifetime of each of the one or more individual organic emissive devices is measured at one or more temperatures at a non-heating current density. Based upon the measured lifetimes at the non-heating current density of the one or more devices, the device lifetime is determined for a selected luminance. An organic emissive panel is also obtained having a second organic stack that consists essentially of the one or more organic layers of the first organic stack. The junction temperature of the organic emissive panel is then determined at a heating current density. Based upon the junction temperature and the device lifetime of the one or more individual organic emissive devices at the selected luminance, the expected lifetime of the organic emissive panel is then determined at the heating current density.
Abstract:
OLED displays capable of operation at a sunlight readable luminance value are disclosed. Devices as disclosed may be wearable such that the display is flexible and the operating temperature rise due to the display operation is below a threshold. Displays with an operating power consumption density of not more than 65 mW/cm2 when operating at 78 mW/cm2 at 100% full white are also provided.
Abstract translation:公开了能够以阳光可读亮度值操作的OLED显示器。 所公开的装置可以是可穿戴的,使得显示器是柔性的并且由于显示操作而导致的操作温度升高低于阈值。 还提供了以100%全白色操作时的工作功耗密度不大于65mW / cm 2的显示器。
Abstract:
Provided are an OLED device and a method of manufacturing the OLED device that may provide improved luminance uniformity. The disclosed OLED may have a first electrode that has a first sheet resistance Rs, and a second electrode that has a second sheet resistance, wherein the second sheet resistance may be in the range of 0.3Rs-1.3Rs. In addition, the disclosed OLED may have a plurality of equal potential difference between points on a first electrode and a second electrode. The equal potential difference may be provided by a gradient resistance formed on at least one of the electrodes.
Abstract:
A first device may be provided in some embodiments. The first device may comprise a substrate, a first emissive region, and a second emissive region, where the first emissive region and the second emissive region may comprise a contiguous area. The first device may further comprise a first electrode disposed over the substrate that extends across the first and the second emissive regions, and an organic layer disposed over the substrate that extends across the first and second emissive regions, where the organic layer comprises the same emissive material across the first and the second emissive regions. The first device may further include a second electrode disposed over the substrate that extends across the first and second emissive regions, where the second electrode includes a patterned layer of conductive material that is disposed in the first emissive region and that is not disposed in the second emissive region.
Abstract:
A first device and methods for manufacturing the first device are provided. The first device may comprise a flexible substrate and at least one organic light emitting device (OLED) disposed over the flexible substrate. The first device may have a flexural rigidity between 10−1 Nm and 10−6 Nm, and the ratio of the critical strain energy release rate to the material density factor for the first device may be greater than 0.05 J m/Kg.