摘要:
A lithium secondary battery has an anode, a cathode, a separator between the anode and the cathode and a non-aqueous electrolyte. The non-aqueous electrolyte includes a lithium salt; and a non-linear carbonate-based mixed organic solvent in which (a) a cyclic carbonate compound, and (b) a propionate-based compound are mixed at a volume ratio (a:b) in the range from about 10:90 to about 70:30. The cathode has a capacity density in the range from about 3.5 to about 5.5 mAh/cm2 and a porosity in the range from about 18 to about 35%. This battery may be manufactured as a high-loading lithium secondary battery.
摘要翻译:锂二次电池具有阳极,阴极,阳极和阴极之间的隔膜和非水电解质。 非水电解质包括锂盐; 和(a)环状碳酸酯化合物和(b)丙酸酯类化合物以体积比(a:b)混合的非线性碳酸酯系混合有机溶剂,为约10:90〜 约70:30。 阴极的容量密度在约3.5至约5.5mAh / cm 2的范围内,孔隙率在约18至约35%的范围内。 该电池可以被制造为高负载锂二次电池。
摘要:
A non-aqueous electrolyte solution for a lithium ion secondary battery includes a lithium salt and an organic solvent. The organic solvent includes a carbonate compound, a linear ester compound and a linear ester decomposition inhibitor. This non-aqueous electrolyte solution restrains swelling while improving low temperature charging/discharging characteristics of the secondary battery in comparison to a conventional electrolyte since it contains the linear ester compound and the linear ester decomposition inhibitor. The non-aqueous electrolyte solution may be used in making a lithium ion secondary battery.
摘要:
Disclosed is a lithium secondary battery, which is low in capacity loss after overdischarge, having excellent capacity restorability after overdischarge and shows an effect of preventing a battery from swelling at a high temperature.
摘要:
A lithium secondary battery has an anode, a cathode, a separator between the anode and the cathode and a non-aqueous electrolyte. The non-aqueous electrolyte includes a lithium salt; and a non-linear carbonate-based mixed organic solvent in which (a) a cyclic carbonate compound, and (b) a propionate-based compound are mixed at a volume ratio (a:b) in the range from about 10:90 to about 70:30. The cathode has a current density in the range from about 3.5 to about 5.5 mAh/cm2 and a porosity in the range from about 18 to about 35%. This battery may be manufactured as a high-loading lithium secondary battery.
摘要:
Disclosed are a non-aqueous electrolyte solution for a lithium secondary battery and a lithium secondary battery comprising the same. The non-aqueous electrolyte solution for a lithium secondary battery comprises a silicon-based compound represented by a specific chemical formula and having both a hydroxyl group and a hydrocarbon group having a carbon-carbon double bond. When it is applied to a lithium secondary battery, the non-aqueous electrolyte solution improves deterioration of cycle life characteristics occurring after repeated charge/discharge cycles and prevents swelling phenomena by suppressing a decomposition reaction of an electrolyte solution even when a battery in a fully charged state is stored at high temperature or is charged/discharged, thereby enhancing the life characteristics at high temperature.
摘要:
A cylindrical lithium secondary battery includes an anode and a cathode, capable of occluding or emitting lithium ions; a non-aqueous electrolyte; and a CID (Current Interrupt Device) for intercepting electric current and lowering inner pressure when the inner pressure of the secondary battery is increased. The cylindrical lithium secondary battery may ensure the safety of the battery with respect to overcharging and also at the same time prevent the problem wherein the CID is activated too early, such that the battery stops its operation when the battery is used in a high-temperature environment.
摘要:
Disclosed is an electrolyte for a secondary battery comprising an electrolyte salt and an electrolyte solvent, the electrolyte further comprising a lactam-based compound substituted with an electron withdrawing group (EWG) at the nitrogen position thereof. The electrolyte allows formation of a firm and dense SEI film on the surface of an anode, minimizes irreversible oxidative decomposition at a cathode, and thus can provide a battery with significantly improved lifespan, stability and high temperature characteristics.
摘要:
A system includes a learning data input unit for receiving initial and long term characteristic learning data of a battery to be a learning object; a measurement data input unit for receiving initial characteristic measurement data of a battery to be an object for long term characteristic estimation; an artificial neural network operation unit for converting the learning data into first and second data structures, allowing an artificial neural network to learn the learning data based on each data structure, converting the measurement data into first and second data structures, and individually applying the learned artificial neural network corresponding to each data structure to calculate and output long term characteristic estimation data based on each data structure; and a long term characteristic evaluation unit for calculating an error of the estimation data of each data structure and determining reliability of the estimation data depending on error.
摘要:
A lithium secondary battery has a cathode made of carbon material capable of occluding or emitting a lithium ion, a cathode made of lithium-contained oxide, and a non-aqueous electrolyte. The non-aqueous electrolyte includes a lithium salt containing LiPF6 and LiBF4; and a non-linear carbonate-based mixed organic solvent in which (a) a cyclic carbonate having ethylene carbonate or a mixture of ethylene carbonate and propylene carbonate and (b) a propionate-based ester such as ethyl propionate are mixed at a volume ratio (a:b) in the range from about 10:90 to about 70:30. This lithium secondary battery ensures excellent high-rate charging/discharging characteristics and improved life cycle and low-temperature discharging characteristics since it includes a predetermined mixed organic solvent not including a linear carbonate. Also, since gas generation is restrained at a high temperature, a battery set may be mounted in a more improved way.
摘要:
Disclosed is a compound represented by the following formula 1: wherein, each of R1˜R13 independently represents —H, —F, —Cl, —Br, —I, —OH, —SH, —COOH, —PO3H2, —NH2, —NO2, —O(CH2CH2O)nH (wherein, n is an integer of 1˜5), C1˜C12 alkyl group, C1˜C12 aminoalkyl group, C1˜C12 hydroxyalkyl group, C1˜C12 haloalkyl group, C2˜C12 alkenyl group, C1˜C12 alkoxy group, C1˜C12 alkylamino group, C1˜C12 dialkylamino group, C6˜C18 aryl group, C6˜C18 aminoaryl group, C6˜C18 hydroxyaryl group, C6˜C18 haloaryl group, C7˜C18 benzyl group, C7˜C18 aminobenzyl group, C7˜C18 hydroxybenzyl group, C7˜C18 halobenzyl group, or nitrile group (—CN); and at least one of R4˜R13 is nitrile group (—CN). A non-aqueous electrolyte comprising: (i) a lithium salt, (ii) a solvent, and (iii) a compound represented by formula 1; and a secondary battery comprising the non-aqueous electrolyte are also disclosed. When the compound represented by formula 1 is added to a non-aqueous electrolyte, it is possible to improve the safety of a secondary battery in an overcharged state.