摘要:
Means for solving the problemsThe thermoplastic resin composition (X1) of the present invention comprises (A1), (B1), (C1), and optionally (D1) below: 1 to 90 wt % of an isotactic polypropylene (A1); 9 to 98 wt % of a propylene/ethylene/α-olefin copolymer (B1) containing 45 to 89 mol % of propylene-derived structural units, 10 to 25 mol % of ethylene-derived structural units, and optionally, 0 to 30 mol % of C4-C20 α-olefin-derived structural units (a1); 1 to 80 wt % of a styrene-based elastomer (C1); and 0 to 70 wt % of an ethylene/α-olefin copolymer (D1) whose density is in the range of 0.850 to 0.910 g/cm3, wherein (A1)+(B1)+(C1)+(D1)=100 wt %.
摘要:
Means for Solving the ProblemsThe thermoplastic resin composition (X1) of the present invention comprises (A1), (B1), (C1), and optionally (D1) below: 1 to 90 wt % of an isotactic polypropylene (A1); 9 to 98 wt % of a propylene/ethylene/α-olefin copolymer (B1) containing 45 to 89 mol % of propylene-derived structural units, 10 to 25 mol % of ethylene-derived structural units, and optionally, 0 to 30 mol % of C4-C20 α-olefin-derived structural units (a1); 1 to 80 wt % of a styrene-based elastomer (C1); and 0 to 70 wt % of an ethylene/α-olefin copolymer (D1) whose density is in the range of 0.850 to 0.910 g/cm3, wherein (A1)+(B1)+(C1)+(D1)=100 wt %.
摘要:
Propylene-based polymers (A) are provided which, when used as pressure-sensitive adhesives to various adherends, show a desired initial adhesion and will not contaminate the adherends and which have excellent pellet handling properties. Pellets of the invention contain the propylene-based polymers (A). Pressure-sensitive adhesives of the invention contain the propylene-based polymers (A). The propylene-based polymer (A) includes 65 to 80 mol % of a structural unit derived from propylene, 5 to 10 mol % of a structural unit derived from ethylene and 15 to 25 mol % of a structural unit derived from a C4-20 α-olefin (wherein these percentages are calculated based on 100 mol % of the total of the structural unit derived from propylene, the structural unit derived from ethylene and the structural unit derived from a C4-20 α-olefin) and has a heat of crystal fusion of 5 to 45 (J/g) as measured by DSC. Compositions of the invention contain the propylene-based polymers (A).
摘要:
A material which is excellent in mechanical strength, solar cell sealing properties, transparency, etc., even in an uncrosslinked state and is used in producing a sheet for solar cell sealing. The thermoplastic resin composition for solar cell sealing comprises (A) 0-70 wt. % propylene polymer having a melting point of 100° C. or higher and (B) 30-100 wt. % propylene copolymer satisfying the following requirements (b). (b) The copolymer has an MFR (230° C., 2.16-kg load) in the range of 0.01-100 g/10 min and satisfies at least one of the following requirements (b-1) and (b-2): (b-1) the rr content is 60% or higher; and (b-2) the copolymer comprises 55-90 mol % structural units derived from propylene and 10-45 mol % structural units derived from a C2-20 α-olefin (excluding propylene) and has an intrinsic viscosity [η] (dL/g) (measured in 135° C. decalin) satisfying a specific relationship with the MFR.
摘要:
A propylene resin composition includes 0 to 80 wt % of a propylene polymer (A) having a DSC melting point of not less than 100° C., 5 to 85 wt % of a specific soft propylene copolymer (B), 0 to 40 wt % of one or more elastomers (C) selected from ethylene elastomers (C1) and styrene elastomers (C2), and 15 to 80 wt % of an inorganic filler (D) (the total of (A), (B), (C) and (D) is 100 wt %) The propylene resin composition contains the inorganic filler at a high proportion and shows excellent flexibility as well as high breaking elongation, low-temperature properties, whitening resistance, scratch resistance, abrasion resistance, stress absorption properties and flame retardancy.
摘要:
It is an object of the present invention to provide a propylene-based polymer composition which is excellent in transparency and heat resistance (particularly, heat resistance at high heat deformation temperature) and is free from occurrence of stickiness even when it is used at a high temperature for a long period of time. The propylene-based polymer composition of the invention comprises (A) a propylene-based polymer (PP) satisfying the following requirements (1) and (2), in an amount of 1 to 99 parts by weight, and (B) a propylene/ethylene/α-olefin copolymer satisfying the following requirements (I) to (IV), in an amount of 99 to 1 part by weight, with the proviso that the total amount of the component (A) and the component (B) is 100 parts by weight; (1) the polymer (A) has a melting point (Tm), as measured by a differential scanning calorimeter (DSC), of not lower than 110° C. but not higher than 170° C., (2) the polymer (A) has an isotactic pentad fraction (mmmm fraction) of not less than 90%, (I) the copolymer (B) contains constitutional units derived from propylene in amounts of 73.1 to 87.0% by mol, constitutional units derived from ethylene in amounts of 10.0 to 16.9% by mol and constitutional units derived from an α-olefin of 4 to 20 carbon atoms in amounts of 3.0 to 10.0% by mol, (II) the copolymer (B) has an isotactic triad fraction (mm), as calculated by 13C-NMR, of not less than 85%, and (III) the copolymer (B) has a molecular weight distribution (Mw/Mn, Mw: weight-average molecular weight, Mn: number-average molecular weight, both being in terms of polystyrene), as measured by gel permeation chromatography (GPC), of not more than 3.5.
摘要:
A phone call status reenactment device for reenacting connection status of a phone call includes a storage and a display unit. The storage stores event data for each event in which connection status of a phone call has changed. The event data includes time data indicating a time when the connection status changed and type data indicating a type of event. The display unit displays data on connection status in response to an instruction. The data on connection status is displayed in order of time in accordance with the event data stored in the storage. The data on connection status includes a quantity of phone calls before answered by a phone call taker, a quantity of phone calls ended without answered by a phone call taker, and a quantity of phone calls answered by a phone call taker.
摘要:
[Problems to be solved] The present invention provides a sealing sheet that can be used instead of the sealing sheet made from the conventionally widely used EVA, which has good transparency, heat resistance and adhesiveness with a polypropylene resin, and good productivity. [Means to solve the problems] The sealing sheet (I) is made from a thermoplastic resin composition comprising 0 to 90 parts by weight of a propylene polymer (A) having a melting point, as measured by a differential scanning calorimeter, of 100° C. or higher, and 10 to 100 parts by weight of a propylene copolymer (B), wherein the copolymer is formed from propylene, and at least one olefin selected from the group consisting of ethylene and α-olefins having 4 to 10 carbon atoms, and the copolymer has a shore A hardness of 30 to 80 and has a melting point, as measured by a differential scanning calorimeter, of 100° C. or lower or has no melting point to be observed (with the total of (A) and (B) being 100 parts by weight), wherein the thermoplastic resin composition has a permanent compression set, as measured at 23° C., of 5 to 35%, and a permanent compression set, as measured at 70° C., of 50 to 70%.
摘要:
The present invention provides a thermoplastic resin composition that gives a solar cell sealing sheet having, even without being crosslinked, good mechanical strength, solar cell sealability, transparency, and weatherability.The thermoplastic resin composition of the present invention comprises 1 to 95% by weight of a propylene-based polymer (A) and 5 to 99% by weight of a copolymer (B) with at least one .-olefin having 2 to 20 carbon atoms other than propylene, wherein (A) satisfies the following (i) and (ii), and (B) has a melting point below 80° C. or does not show a melting point as measured by a differential scanning calorimeter (DSC). (i) Melting point measured by a differential scanning calorimeter (DSC) method is in the range of 80 to 135° C. (ii) Endotherm attributable to crystal melting is not observed at 140° C. or more in the endothermic curve measured by a differential scanning calorimeter (DSC) method.
摘要:
A structure having radial holes extending from a ring passage communicated with a revolution lead fittings having spiral grooves and fuel lead fittings having truncated cone shaped holes and straight holes, and further provided with an outer fixing ring having spray holes and hemispherical recesses.