摘要:
A rare earth metal extractant in the form of a dialkyl diglycol amic acid is synthesized by reacting diglycolic anhydride with a dialkylamine in an aprotic polar solvent, with a molar ratio of dialkylamine to diglycolic anhydride being at least 1.0, and removing the aprotic polar solvent.
摘要:
The particle components may be collected by using a phenomenon that the particle components in the aqueous phase aggregate at the liquid-to-liquid interface. Both of the particle components and the dissolved components in the aqueous phase may be simultaneously collected if combined with liquid-liquid extraction phenomenon that the dissolved components in the aqueous phase are collected into the solvent phase through the liquid-to-liquid interface. The aggregation phenomenon of the particle components at the liquid-to-liquid interface may be promoted by using an emulsion flow method, a method of applying mechanical external forces (such as stirring and vibrating) or another method combining both the above-mentioned methods.
摘要:
A rare earth metal extractant in the form of a dialkyl diglycol amic acid is synthesized by reacting diglycolic anhydride with a dialkylamine in an aprotic polar solvent, with a molar ratio of dialkylamine to diglycolic anhydride being at least 1.0, and removing the aprotic polar solvent.
摘要:
A rare earth metal extractant containing, as the extractant component, dialkyldiglycol amide acid which is excellent in breaking down light rare earth elements is reacted in diglycolic acid (X mol) and an esterification agent (Y mol) at a reaction temperature of 70° C. or more and for a reaction time of one hour or more such that the mol ratio of Y/X is 2.5 or more, and is subjected to vacuum concentration. Subsequently, a reaction intermediate product is obtained by removing unreacted products and reaction residue, and an aprotic polar solvent is added as the reaction solvent. Then, the reaction intermediate product is reacted with dialkyl amine (Z mol) such that the mol ratio of Z/X is 0.9 or more and the aprotic polar solvent is removed. As a consequence, a rare earth metal extractant is efficiently synthesized at a low cost and at a high yield without having to use expensive diglycolic acid anhydride and harmful dichloromethane.
摘要:
A rare earth metal extractant in the form of a dialkyl diglycol amic acid is synthesized by reacting diglycolic anhydride with a dialkylamine in a synthesis medium. A molar ratio (B/A) of dialkylamine (B) to diglycolic anhydride (A) is at least 1.0. A non-polar or low-polar solvent in which the dialkyl diglycol amic acid is dissolvable is used as the synthesis medium.
摘要:
A rare earth metal extractant in the form of a dialkyl diglycol amic acid is synthesized by reacting diglycolic anhydride with a dialkylamine in a synthesis medium. A molar ratio (B/A) of dialkylamine (B) to diglycolic anhydride (A) is at least 1.0. A non-polar or low-polar solvent in which the dialkyl diglycol amic acid is dissolvable is used as the synthesis medium.
摘要:
The particle components may be collected by using a phenomenon that the particle components in the aqueous phase aggregate at the liquid-to-liquid interface. Both of the particle components and the dissolved components in the aqueous phase may be simultaneously collected if combined with liquid-liquid extraction phenomenon that the dissolved components in the aqueous phase are collected into the solvent phase through the liquid-to-liquid interface. The aggregation phenomenon of the particle components at the liquid-to-liquid interface may be promoted by using an emulsion flow method, a method of applying mechanical external forces (such as stirring and vibrating) or another method combining both the above-mentioned methods.
摘要:
A rare earth metal extractant containing, as the extractant component, dialkyldiglycol amide acid which is excellent in breaking down light rare earth elements is reacted in diglycolic acid (X mol) and an esterification agent (Y mol) at a reaction temperature of 70° C. or more and for a reaction time of one hour or more such that the mol ratio of Y/X is 2.5 or more, and is subjected to vacuum concentration. Subsequently, a reaction intermediate product is obtained by removing unreacted products and reaction residue, and an aprotic polar solvent is added as the reaction solvent. Then, the reaction intermediate product is reacted with dialkyl amine (Z mol) such that the mol ratio of Z/X is 0.9 or more and the aprotic polar solvent is removed. As a consequence, a rare earth metal extractant is efficiently synthesized at a low cost and at a high yield without having to use expensive diglycolic acid anhydride and harmful dichloromethane.
摘要:
Solvent extraction from an aqueous phase containing first and second rare earth elements is carried out by contacting an organic phase containing a diglycolamic acid as an extractant and a hydrocarbon or a low-polar alcohol as a solvent, with the aqueous phase below pH 3 for extracting the first rare earth element into the organic phase, back-extracting from the organic phase with an aqueous acid solution for recovering the first rare earth element, and recovering the second rare earth element which has not been extracted into the organic phase and has remained in the aqueous phase.
摘要:
The particle components may be collected by using a phenomenon that the particle components in the aqueous phase aggregate at the liquid-to-liquid interface. Both of the particle components and the dissolved components in the aqueous phase may be simultaneously collected if combined with liquid-liquid extraction phenomenon that the dissolved components in the aqueous phase are collected into the solvent phase through the liquid-to-liquid interface. The aggregation phenomenon of the particle components at the liquid-to-liquid interface may be promoted by using an emulsion flow method, a method of applying mechanical external forces (such as stirring and vibrating) or another method combining both the above-mentioned methods.