Abstract:
A vane compressor has a vane back pressure adjustment device including back-pressure chambers defined in a vane-supporting rotor and surrounded by vanes and side blocks secured to axial ends of a cylinder. The back-pressure chamber has axial ends disposed to follow a path against each of the side blocks when the rotor rotates. The path is divided into at least one high-pressure zone in which the vanes move across a pump outlet defined in the cylinder, and at least one normal-pressure zone which is the remainder of the path. In the normal-pressure zone, oil grooves defined in surfaces of the side blocks which face the rotor and supplied with oil from an oil sump in the vane compressor are in communication with the back-pressure chambers, to thereby maintain the oil pressure in the back-pressure chambers at a pressure level in the oil sump. In the high-pressure zone, the back-pressure chambers are out of communication with the oil grooves so that the oil fed into the back-pressure chambers is confined therein, except through a restrictor means. When the vanes move across the pump outlet, the vanes enter the high-pressure zone to trap oil in the back-pressure chambers to thereby elevate the oil pressure in the back-pressure chambers to a high level. Therefore, the vanes are prevented from being retracted deeply into vane slits in the rotor and then popping out into hitting engagement with the cylinder.
Abstract:
A vane compressor is provided which includes a rotor which has an internal space formed at its central portion and communicating with a plurality of vane-inserted slits formed in its outer peripheral surface, and first and second axial through holes extending from the internal space to its opposite end surfaces. The drive shaft extends through an end wall member of the pump housing and has its end portion rigidly fitted in the first axial through hole of the rotor. The second axial through hole of the rotor receives a support shaft projecting from the other or opposite end wall member of the pump housing. Thus, the rotor is radially supported at its one end by the drive shaft and at its other end by the support shaft, respectively.
Abstract:
A vane compressor is provided with a discharge rate control device which comprises valve means arranged to close part of the fluid suction passage leading to the pump working chambers to vary the opening of the fluid suction passage, and valve driving means for controlling the valve means. The valve means may be formed of at least one valve disposed to close an associated one of the inlet ports opening in the pump working chambers. The discharge rate control device may be arranged to be operated as a function of the rotational speed of the rotor of the compressor or the temperature of fluid being sucked into the compressor, which makes it possible, for instance, to keep the refrigerating capacity of an air conditioning system associated with the compressor at a substantially constant value.
Abstract:
A vane compressor has a vane back pressure adjustment device including back-pressure chambers defined in a vane-supporting rotor and surrounded by vanes and side blocks secured to axial ends of a cylinder. The back-pressure chamber has axial ends disposed to follow a path against each of the side blocks when the rotor rotates. The path is divided into at least one high-pressure zone in which the vanes move across a pump outlet defined in the cylinder, and at least one normal-pressure zone which is the remainder of the path. In the normal-pressure zone, oil grooves defined in surfaces of the side blocks which face the rotor and supplied with oil from an oil sump in the vane compressor are in communication with the back-pressure chambers, to thereby maintain the oil pressure in the back-pressure chambers at a pressure level in the oil sump. In the high-pressure zone, the back-pressure chambers are out of communication with the oil grooves so that the oil fed into the back-pressure chambers is confined therein, except through a restrictor means. When the vanes move across the pump outlet, the vanes enter the high-pressure zone to trap oil in the back-pressure chambers to thereby elevate the oil pressure in the back-pressure chambers to a high level. Therefore, the vanes are prevented from being retracted deeply into vane slits in the rotor and then popping out into hitting engagement with the cylinder.
Abstract:
A vane compressor has a vane back pressure adjustment device including back-pressure chambers defined in a vane-supporting rotor and surrounded by vanes and side blocks secured to axial ends of a cylinder. The back-pressure chamber has axial ends disposed to follow a path against each of the side blocks when the rotor rotates. The path is divided into at least one high-pressure zone in which the vanes move across a pump outlet defined in the cylinder, and at least one normal-pressure zone which is the remainder of the path. In the normal-pressure zone, oil grooves defined in surfaces of the side blocks which face the rotor and supplied with oil from an oil sump in the vane compressor are in communication with the back-pressure chambers, to thereby maintain the oil pressure in the back-pressure chambers at a pressure level in the oil sump. In the high-pressure zone, the back-pressure chambers are out of communication with the oil grooves so that the oil fed into the back-pressure chambers is confined therein, except through a restrictor means. When the vanes move across the pump outlet, the vanes enter the high-pressure zone to trap oil in the back-pressure chambers to thereby elevate the oil pressure in the back-pressure chambers to a high level. Therefore, the vanes are prevented from being retracted deeply into vane slits in the rotor and then popping out into hitting engagement with the cylinder.
Abstract:
A rotary compressor features a passage structure and valve arrangement which, under given modes of operation, permits relatively hot gaseous compressed working fluid to be introduced into a chamber proximate a bearing which is subject to cooling and the lubricant therein subject to dilution by working fluid under such conditions, in a manner to warm the bearing and its immediate surroundings and obviate the dilution problem.
Abstract:
In a refrigerant compressor, a driving shaft is rotatably supported within a compressor housing by a bearing on a suction side. A trigger valve is provided in a passageway communicating a discharge pressure chamber with the bearing on the suction side. When pressure within the discharge pressure chamber is lower than a predetermined value, the trigger valve opens the passageway to permit gaseous refrigerant of high temperature within the discharge pressure chamber to be supplied to the bearing on the suction side.
Abstract:
A rotary vane compressor in which the pressure difference between inlet and outlet passages is utilized to accomplish lubrication without a supplementary oil pump comprises a housing with a cylindrical bore, a hollow rotor eccentrically rotatable on a shaft in the bore and at least one vane radially slidable in a slot in the rotor and sealingly engaging with the inner surfaces of the bore to define fluid chambers of varying volume. The compressor further has inlet and outlet passages communicating with the bore and an oil sump disposed below the bore. A first passageway connects the outlet passage with the sump, and the hollow of the rotor constitutes a second passageway. A third passageway connects the sump with one end of the hollow and a fourth passageway connects the other end of the hollow with the inlet passage. Fluid pressure in the outlet passage acts on the oil in the sump through the first passageway to force oil from the sump through the third, second and fourth passageways respectively to the inlet passage to lubricate the sliding contact portions of the rotor, shaft, vane and housing. Oil in the inlet passageway is sucked into the bore to lubricate the inner surface thereof and is discharged into the outlet passage from which it is returned to the sump through the first passageway. The third and fourth passageways may extend through chambers for bearings or mechanical seals for the shaft for lubrication thereof.
Abstract:
A vane compressor has a vane back pressure adjustment device including back-pressure chambers defined in a vane-supporting rotor and surrounded by vanes and side blocks secured to axial ends of a cylinder. The back-pressure chamber has axial ends disposed to follow a path against each of the side blocks when the rotor rotates. The path is divided into at least one high-pressure zone in which the vanes move across a pump outlet defined in the cylinder, and at least one normal-pressure zone which is the remainder of the path. In the normal-pressure zone, oil grooves defined in surfaces of the side blocks which face the rotor and supplied with oil from an oil sump in the vane compressor are in communication with the back-pressure chambers, to thereby maintain the oil pressure in the back-pressure chambers at a pressure level in the oil sump. In the high-pressure zone, the back-pressure chambers are out of communication with the oil grooves so that the oil fed into the back-pressure chambers is confined therein, except through a restrictor means. When the vanes move across the pump outlet, the vanes enter the high-pressure zone to trap oil in the back-pressure chambers to thereby elevate the oil pressure in the back-pressure chambers to a high level. Therefore, the vanes are prevented from being retracted deeply into vane slits in the rotor and then popping out into hitting engagement with the cylinder.
Abstract:
A rotor is eccentrically mounted in a bore of a housing and formed with radial slots in which vanes are slidably retained. A lubricant passageway leads from an oil sump through the radially inner portions of the slots to a fluid inlet, the oil sump communicating with a fluid outlet passageway leading to an outlet port. The high pressure in the outlet passageway forces oil through the lubricant passageway to lubricate the vanes and urge the vanes into sealing engagement with the inner wall of the bore. Oil sucked from the inlet into the bore lubricates the outer ends of the vanes and is recovered at the outlet and returned to the oil sump. In a first embodiment of the invention a check valve blocks the outlet port until the pressure in the outlet passageway reaches a level sufficient to sealingly press the vanes against the wall of the bore, thereby increasing the speed of pressure buildup in the outlet passageway. In a second embodiment of the invention a first check valve is provided between the bore and the outlet passageway and a second check valve is provided between the bore and lubricant passageway in such a manner that compressed working fluid is introduced into the lubricant passageway to press the vanes against the wall of the bore until sufficient pressure is built up for the oil to effectively press the vanes against the wall of the bore.