Abstract:
A high-efficiency water-cooled heat dissipation device includes a heat sink base, an inner cover, an impeller, a lower casing and a motor that are arranged from bottom to top. By providing the inner cover, the inner cover covers a fin portion of the heat sink base. When in use, a cold liquid flows into the inner cover from first perforations and is evenly distributed on the fin portion, and then flows out of a liquid outlet chamber from second perforations, so that the cold liquid can be effectively drained to avoid the mixing of the cold liquid and the hot liquid, thereby fully utilizing the cold liquid for heat absorption to improve the heat dissipation effect.
Abstract:
A riveting structure for a thin heat sink fin and a thin cover plate is disclosed. The riveting structure includes a plurality of thin heat sink fins and a thin cover plate. The top of each thin heat sink fin is provided with a raised portion, the thin cover plate is formed with a plurality of riveting holes, and the raised portion is riveted and fixed to a corresponding one of the riveting holes in a rolling manner by a rolling device, instead of the traditional manual welding method. This improves the assembly efficiency greatly, reduces the labor cost, and reduces the product defect rate effectively.
Abstract:
The present invention is directed to articles comprising nanofibers. The nanofibers, having a diameter of less than 1 micron, may comprise a significant number of the fibers in one layer of the web contained by the article. Preferably, the nanofibers are produced in a melt film fibrillation process. The articles include diapers, training pants, adult incontinence pads, catamenials products such as feminine care pads and pantiliners, tampons, personal cleansing articles, personal care articles, and personal care wipes including baby wipes, facial wipes, and feminine wipes.
Abstract:
An apparatus for producing sub-micron fibers, and more specifically an apparatus for effecting formation of sub-micron fibers by fibrillation of polymer films, and nonwoven materials and articles incorporating them.
Abstract:
A single image from a camera (14) is captured of an individual (40) seeking entry through a door held by a door latch (24). An image processor (16) looks for and locates a tag (42) worn by the individual (40) in the image and reads an identification (ID) code from the tag (42). A comparator (20) compares this ID code with ID codes in an identification database (22) to find a match. Once a match of ID codes is found, the image processor (16) looks for and locates a face (44) of the individual (40) in the image and extracts facial features from the face (44). The comparator (20) compares the extracted facial features with facial features associated with the matched ID code, from the identification database (22), to find a match. Once there is a match of facial features, the door latch (24) is released.
Abstract:
The present invention is directed to articles comprising nanofibers. Preferred articles include diapers, training pants, adult incontinence pads, catamenials products such as feminine care pads and pantiliners, tampons, personal cleansing articles, personal care articles, and personal care wipes including baby wipes, facial wipes, body wipes, and feminine wipes. The nanofiber webs can be used as a barrier, wipe, absorbent material, and other uses. The nanofibers, having a diameter of less than 1 micron, must comprise a significant number of the fibers in at least one nanofiber layer of the nonwoven web. The nonwoven web may have a hydrohead to basis weight ratio of greater than about 10 mbar/gsm. The nanofibers may be produced from a melt film fibrillation process.
Abstract:
A process for removing metallic material, for instance copper, iron, nickle and their oxides, from a surface of a substrate such as a silicon, silicon oxide or gallium arsenide substrate. The process includes the steps of: a) placing the substrate in a reaction chamber; b) providing in the reaction chamber a gas mixture, the mixture comprising a first component which is fluorine or a fluorine-containing compound, which will spontaneously dissociate upon adsorption on the substrate surface and a second component which is a halosilane compound, the halosilane, and the fluorine if present, being activated by: i) irradiation with UV; ii) heating to a temperature of about 800.degree. C. or higher; or iii) plasma generation, to thereby convert said metallic material to a volatile metal-halogen-silicon compound, and c) removing the metal-halogen-silicon compound from the substrate by volatilization. The process may be used to remove both dispersed metal and bulk metal films or islands.
Abstract:
A method for removing a resist layer, particularly in via holes, includes plasma to remove organic compounds, rinsing the device in deionized water, and sputtering with argon to remove inorganic compounds. The order of rinsing and sputtering can be reversed. These methods avoid the use of acids and industrial solvents.
Abstract:
A method for removing a resist layer includes an RIE process and a downstream microwave process, each performed such that the temperature of the wafer is no greater than about 60.degree. C. By performing these processes cold, the resist need not be pre-heated to drive off solvents. The RIE process and the microwave process can be performed sequentially or simultaneously.
Abstract:
An article having as a component a section of nonwoven web formed predominately of polymeric fibers is disclosed. The section of nonwoven web may have a pattern of consolidating bonds impressed on the surface. The bonds may have at least one bond shape; and the bond shape may have a perimeter with a greatest measurable length and greatest measurable width. The perimeter may have a convex portion and an aspect ratio of length/width of at least 2.5. Other features may be imparted relating to the density and orientations of the bonds relative machine and cross directions of the web. The bond shape reflects the shape of a corresponding bonding protrusion on a bonding roller. It is believed that the shape, density and/or orientation of the bonding protrusions affect air flow through the bonding nip in a way that may be utilized to enhance loft of the resulting bonded nonwoven web.