Abstract:
A method for removing intra-microchannel bubbles, which removes bubbles occurring in a microchannel, is provided; the method including: allowing a liquid that contains bubbles and is introduced into a microchannel to flow in a first direction at a first flow speed at which the bubbles float upward and can remain adhered on an inner wall of the microchannel or less; and then allowing the liquid to flow in a second direction that is opposite to the first direction to move a gas-liquid interface of the liquid, which is a rear end of the liquid in the second direction, in the second direction at a second flow speed at which the bubbles adhered on the inner wall of the microchannel can maintain an adhesion position so as to collect the bubbles on the gas-liquid interface and make the bubbles disappear by exposing the bubbles to a gas.
Abstract:
In the rare sugar strategy of Izumoring (FIG. 1), it is intended to establish a reaction system of producing rare sugars of many types by acquiring an isomerase which acts on various rare aldoses and, therefore, is most efficient in producing various rare ketoses. A DNA encoding the following protein (a) or (b). The above-mentioned DNA which is L-rhamnose isomerase derived from Pseudomonas stutzerii. A protein comprising the amino acid sequence represented by SEQ ID NO:2. A process for producing a recombinant protein characterized by culturing a host cell containing an expression system that can express the above-mentioned protein in a medium and collecting a recombinant protein having an L-rhamnose isomerase activity from the thus obtained culture. A method of applying FIG. 1 to the production of a rare sugar characterized in that the location of a target rare sugar in the overall picture of monosaccharides is understood and thus the optimum production pathway on which the above protein is allowed to act is designed.
Abstract:
In the rare sugar strategy of Izumoring (FIG. 1), it is intended to establish a reaction system of producing rare sugars of many types by acquiring an isomerase which acts on various rare aldoses and, therefore, is most efficient in producing various rare ketoses. A DNA encoding the following protein (a) or (b). The above-mentioned DNA which is L-rhamnose isomerase derived from Pseudomonas stutzerii. A protein comprising the amino acid sequence represented by SEQ ID NO:2. A process for producing a recombinant protein characterized by culturing a host cell containing an expression system that can express the above-mentioned protein in a medium and collecting a recombinant protein having an L-rhamnose isomerase activity from the thus obtained culture. A method of applying FIG. 1 to the production of a rare sugar characterized in that the location of a target rare sugar in the overall picture of monosaccharides is understood and thus the optimum production pathway on which the above protein is allowed to act is designed.
Abstract:
In the rare sugar strategy of Izumoring (FIG. 1), it is intended to establish a reaction system of producing rare sugars of many types by acquiring an isomerase which acts on various rare aldoses and, therefore, is most efficient in producing various rare ketoses. A DNA encoding the following protein (a) or (b). The above-mentioned DNA which is L-rhamnose isomerase derived from Pseudomonas stutzerii. A protein comprising the amino acid sequence represented by SEQ ID NO:2. A process for producing a recombinant protein characterized by culturing a host cell containing an expression system that can express the above-mentioned protein in a medium and collecting a recombinant protein having an L-rhamnose isomerase activity from the thus obtained culture. A method of applying FIG. 1 to the production of a rare sugar characterized in that the location of a target rare sugar in the overall picture of monosaccharides is understood and thus the optimum production pathway on which the above protein is allowed to act is designed.
Abstract:
In the rare sugar strategy of Izumoring (FIG. 1), it is intended to establish a reaction system of producing rare sugars of many types by acquiring an isomerase which acts on various rare aldoses and, therefore, is most efficient in producing various rare ketoses. A DNA encoding the following protein (a) or (b). The above-mentioned DNA which is L-rhamnose isomerase derived from Pseudomonas stutzerii. A protein comprising the amino acid sequence represented by SEQ ID NO:2. A process for producing a recombinant protein characterized by culturing a host cell containing an expression system that can express the above-mentioned protein in a medium and collecting a recombinant protein having an L-rhamnose isomerase activity from the thus obtained culture. A method of applying FIG. 1 to the production of a rare sugar characterized in that the location of a target rare sugar in the overall picture of monosaccharides is understood and thus the optimum production pathway on which the above protein is allowed to act is designed.