Abstract:
Disclosed are devices for dispensing air treatment chemicals, and refill units for use therewith. Some of these devices have a well facing the heater and a transparent wall to view the use up of the air treatment chemical. Other of these devices have a refill with wells positioned in opposing directions.
Abstract:
A replacement device for a light bulb includes a translucent shell and a base. The base is configured to be received in a conventional light socket. The base also includes a compartment, slot or recess for receiving and securing a replaceable volatile active insert for enabling the device to emit an insect control material when the insert is secured in the compartment Combinations of one or more of a coiled fluorescent light, a plurality of colored LEDs, and an incandescent light source may also provided in the shell as a source of illumination. Thus, a single device is used as a replacement for a conventional light bulb that provides insect control in the form of a cartridge, bottle, mat, tube, sheet, patch etc.
Abstract:
Disclosed are devices for dispensing air treatment chemicals. There is a substrate bearing a first volatile air treatment chemical that is capable of being dispensed from the substrate when the substrate is heated, and an indicator unit holding a volatile indicator chemical separate from the first volatile air treatment chemical such that the volatile indicator chemical is capable of being dispensed from the unit when the unit is heated. The extent of dispensing of the first volatile air treatment chemical can be indicated by a visible cue whose appearance results from the dispensing of the volatile indicator chemical. In one form the unit also holds a second air treatment chemical. In another the indicator unit is a replaceable cartridge positionable more remote from the heater than the substrate.
Abstract:
Heated volatile dispensers are disclosed that are provided with automated dye-based use-up indicators. Multiple migrate able dyes of different colors are positioned adjacent a porous substrate. Heating of the substrate, such as a slab impregnated with an insect repellent, both causes the impregnated chemical to dispense from the slab and the indicator dyes to migrate to one or more visible positions. One dye migrates to a visible position faster than a dye of a different color. Further heating may cause one or both dyes to change color at a visible position. The dye movement imparts information about the degree of use-up of the impregnating chemical.
Abstract:
Heated volatile dispensers are disclosed that are provided with automated use-up indicators. The indicators are associated with a porous substrate. A migrateable dye is covered by meltable material adjacent the substrate. Heating of a substrate such as a slab impregnated with an insect repellent both causes the insect repellent to dispense and melts the covering. The dye then migrates to a visible surface of the substrate to indicate a degree of use. The extent of migration, and the patterns formed on the visible surface by the migrating dye, indicate the extent to which the volatile air treatment chemical has been dispensed.