摘要:
An overvoltage protection circuit is galvanically, directly connected across at least part of the secondary winding in the ignition system of an internal combustion engine. The input portion of the overvoltage protection circuit is a voltage divider preferably constituted by RC elements. The voltage at the tap of the voltage divider is applied to a Schmitt trigger. When the voltage across the secondary winding becomes excessively high, the Schmitt trigger output pulse triggers a monostable multivibrator whose output pulse in turn increases the conductivity of a transistor switch located in series with the primary. The increase in primary current tends to oppose further increases in primary and secondary voltages. Alternatively, the output from the multivibrator could be used to shorten the time of current flow in the primary winding in subsequent ignition time intervals or to completely block any subsequent ignition process.
摘要:
Adapter plugs are proposed for electronic circuits in motor vehicles which normally receive plug-in units. The adapter plug is interposed between the circuits and the plug-in units and contains circuits which improve the operation of such units. Specifically, in ignition control circuits, the circuitry in the adapter plug can contain a thyristor which is normally blocked, but which shunts energy from the ignition capacitor when the ignition switch is open while the interrupter switch is closed. This prevents the generation of undesired sparks.
摘要:
To permit use of shaft position transducers which provide needle pulses at predetermined angular positions of the crankshaft of an engine, such as Wiegand-type, and still enable generation of a counted dwell time even under transient conditions, or under low-speed conditions, the output from the Wiegand transducer is connected to a logic circuit which, under normal operating conditions, by use of a counter counts a predetermined time interval after opening of a switch in series with the ignition coil to determine the dwell period or initiation of current flow for a subsequent ignition event by resetting the counter with a reverse polarity subsequent pulse, thereby passing, upon reset, a predetermined count state which, similar to the normal counting of the count state, initiates closing of the switch. Thus, even though the normal counting time has not yet been reached, the reset operation of the counter will trigger closing of the switch and hence sufficient current flow through the ignition coil to store the appropriate electromagnetic energy therein for a reliable spark at the spark plug.
摘要:
To provide for gradual turn-off of an ignition coil current control transistor, a control capacitor which provides turn-off current has its charge state changed gradually by means of an auxiliary transistor so connected to the capacitor that the conduction of the emitter-collector path of the auxiliary transistor is gradually changed, the main switching transistor being connected to and controlled by the auxiliary transistor and likewise changing gradually from conductive to blocking state in dependence on the gradual change in conduction of the emitter-collector path of the auxiliary transistor to prevent rapid turn-off of the main switching transistor and hence an undesired pulse at the secondary of the ignition coil which may induce continued operation of the internal combustion engine even though the ignition has been turned off.
摘要:
To provide a first accurately timed ignition impulse for any one ignition event, and then, selectively, one or more ignition pulses, in accordance with sensed or existing operating parameters of the engine, a first ignition pulse is generated, accurately, in accordance with timing as determined by an ignition timing stage; a frequency generator is selectively enabled upon the presence or absence of operating parameters at certain values to provide sequential ignition pulses after the first, accurately timed ignition pulse has been provided.
摘要:
To prevent generation of a spurious spark at the spark plug if the distributor braker control assembly should have commanded an ignition control transistor to be conductive and when the ignition switch is disconnected under those conditions, thus cutting off power to the ignition control transistor rendering it non-conductive and causing spurious voltage pulses which results in a spark at the ignition, a control path is provided connected to a control transistor for the actual ignition transistor and connected in circuit with the current flow due to the energy stored in the ignition coil to control the emitter-collector path of the ignition switching transistor to continue to remain conductive for a short period of time to drain off the stored energy in the coil, although the main ignition switch has been opened.
摘要:
To prevent a spurious inductive spark when the master ignition switch of the vehicle is opened with the breaker terminals closed, so that current stored in the ignition coil might cause a spurious inductive voltage pulse, a protective circuit branch is connected in parallel across the primary of the ignition coil and includes an auxiliary semiconductor short-circuiting switch, preferably a thyristor, the conduction of which is controlled to close by an auxiliary control circuit which senses opening of the master ignition switch and permits application of a portion of the inductive current flow to the gate of the thyristor to render it conductive, thus short-circuiting the primary of the ignition coil and preventing an inductive voltage kick which might cause a spurious spark.
摘要:
To improve the operation of semiconductor control ignition systems under widely varying supply voltage conditions, a voltage divider having a division tap point is connected in parallel to the main switching part of the switching transistor of the ignition system, and a voltage breakdown element, typically a Zener diode is connected from the tap point to the control electrodes of the semiconductor switch to provide an additional control voltage thereto if the voltage at the tap point exceeds a value leading to breakdown of the breakdown device (Zener diode); the main control circuit for the main ignition transistor may be conventional.
摘要:
When the engine accelerates, the angle over which the ignition switch is closed prior to initiating the spark is automatically increased. Acceleration of the engine is detected by a comparator which compares the value of a speed-dependent signal in sequential cycles and initiate closure of the ignition switch if a predetermined difference is exceeded between the so-compared signals at a predetermined time in the cycle. Under static or decelerating conditions, the speed-dependent signal is compared, in each cycle, to the output of an integrator circuit. The integrator circuit integrates in a first direction at a first rate up to the above-mentioned predetermined time in the cycle and in the opposite direction at a second predetermined rate for the remainder of the cycle. The average value of the integrator output signal corresponds to the engine speed. When the so-compared signals are equal, the second comparator furnishes an output signal which closes the ignition switch. The integrating rates may be varied as a function of operating parameters of the engine.
摘要:
The invention relates to a final ignition stage of a transistorized ignition system (1) having a Darlington transistor (DT), in the collector-emitter circuit of which the primary coil current (I.sub.SP) of an ignition coil (ZS) flows and which is controlled via a base line (2). According to the invention, there is a regulating transistor (T.sub.1) arranged between the base line (2) to the base of the Darlington transistor (DT) and earth, said regulating transistor being driven in correspondence with the size of the primary coil current (I.sub.SP) and for purposes of current limitation partially conducting away to earth the base current flowing into the Darlington transistor (DT). Thus, a simple, cost-effective circuit for limiting the primary coil current and thus the stored ignition power is obtained.