摘要:
A linear electrodynamic-type motor, for compressing a fluid circulating in a cryocooler notably using a Stirling cycle, includes a translationally movable induction coil; a power-supply circuit adapted to deliver, to at least one induction coil, an AC power-supply current; a movable mass adopting a translational movement; an induction coil arranged so as to move a respective movable mass between a first position and a second position where the movable mass can compress the fluid; and a secondary circuit arranged to connect the terminals of at least one induction coil in short-circuit. The secondary circuit comprises a compensation component for producing a phase shift between the power-supply voltage and the power-supply current, so as to reduce the phase difference that the inductance of the induction coil produces.
摘要:
The invention relates to a method for absorbing the displacement, under the influence of an external force, of at least one plunger (10,20) in a linear electrodynamic motor comprising a least an induction coil (11, 21) magnetically coupled with the plunger. Said method comprises the steps of: detecting in said induction coil a current induced (I′ind) amplified relative to the induced current. The invention can be applied to cryogenic machines on board space ships.
摘要:
A method for the pulsating load refrigeration of a component of a Tokamak, said method using a refrigeration device subjecting a working fluid such as helium to a working cycle, the Tokamak comprising at least one operating mode called “periodic and symmetrical,” according to the method, the refrigerating power produced by the refrigeration device being increased to a relatively high level when the Tokamak is in a plasma generating phase (Dp) whereas the refrigerating power produced by the refrigeration device is reduced to a relatively low level when the Tokamak is no longer in a plasma generating phase (Dnp), characterized in that during the “periodic and symmetrical” operating phase of the Tokamak, the refrigerating power of the refrigeration device is regulated according to a forced variation also of the “periodic and symmetrical” type, that is one wherein the respective durations of generation of a high level of refrigeration and of generation of a low level of refrigerating power differ at most by 30%, and in that the variation in refrigerating power brings about gradual increases and reductions in refrigerating power, and in that the increase in refrigerating power produced by the refrigeration device is triggered in advance, in response to a signal (S) generated during a plasma starting step in the Tokamak, that is before the thermal load on the component increases.
摘要:
The invention relates to a method and device for pulsed charge refrigeration of a member from a Tokamak. The method uses a refrigeration device that subjects a working fluid such as helium to a work cycle comprising: compression, cooling, and decompression, as well as heat exchange with the member and heating. The refrigeration power produced by the refrigeration device is increased to a relatively high level when the Tokamak is in a plasma generation phase, and the refrigeration power produced by the refrigeration device is decreased to a relatively low level when the Tokamak is no longer in a plasma generation phase. Said method is characterized in that the increase in refrigeration power produced by the refrigeration device is automatically triggered in response to a signal produced during a step for starting plasma in the Tokamak.
摘要:
A method for the pulsating load refrigeration of a component of a Tokamak using a refrigeration device subjecting a working fluid to a working cycle. At least one “periodic and symmetrical” operating mode of the Tokamak includes an operating mode in which plasmas of preset duration Dp are generated periodically with intervals of duration Dnp between two successive plasmas. Dnp=Dp±30%. The cooling device cooling power is increased to a relatively high level in a plasma generation phase and reduced to a relatively low level when the Tokamak is no longer in a plasma generation phase. The refrigerating power variation brings gradual increases and reductions in refrigerating power. The increase in the refrigeration device refrigerating power is triggered in advance, in response to a signal (S) generated during a plasma starting step before the thermal load on the component increases.
摘要:
The invention relates to a method and device for pulsed charge cooling of a component of a Tokamak. The method uses a refrigeration device that subjects a working fluid such as helium to a work cycle including: compression, cooling, and decompression, as well as heat exchange with the member and heating. The refrigeration power produced by the refrigeration device is increased to a relatively high level when the Tokamak is in a plasma generation phase and is decreased to a relatively low level when the Tokamak is no longer in a plasma generation phase. The increase in refrigeration power produced by the refrigeration device is automatically triggered in response to a signal produced during a step for starting plasma in the Tokamak.
摘要:
The invention relates to a method for absorbing the displacement, under the influence of an external force, of at least one plunger (10,20) in a linear electrodynamic motor comprising a least an induction coil (11, 21) magnetically coupled with the plunger. Said method comprises the steps of: detecting in said induction coil a current induced (I′ind) amplified relative to the induced current. The invention can be applied to cryogenic machines on board space ships.