Abstract:
The present disclosure relates to an apparatus for correcting a current reference, and more particularly, to an apparatus for correcting a current reference including a calculation unit configured to set a first torque reference section and a second torque reference section using candidate values of a correction factor that corrects the current reference so as to enable the current reference to satisfy rated operating conditions of the induction machine, and calculate the correction factor according to a section, in which the torque reference is included, of the first torque reference section and the second torque reference section, and a correction unit configured to correct the current reference using the correction factor.
Abstract:
An electric submersible pump (ESP) variable speed drive (VSD) controller is described. A VSD control system includes a pump assembly including an induction motor operatively coupled to a pump, a power cable and a transformer electrically coupled between the induction motor and a VSD controller that controls a speed of the induction motor, the VSD controller including a converter section that sends a direct current (DC), a DC link including a DC smoothing capacitor that smooths the DC, an inverter that converts the smoothed DC to a pulse width modulated (PWM) output voltage, the inverter including at least one silicon carbide (SiC) power semiconductor module, and a PWM filter that filters the PWM output voltage to produce near sinusoidal voltages, the PWM filter including inductors, and the PWM filter sending voltage to the transformer.
Abstract:
This system changes the way internal Gasoline, Diesel, Turbine, and Combustion Engines (10 operating portable Alternators/Generators (30), or Stationary Power Stations (40) produce AC/DC, any Hertz electrical input power to any Hertz ECU/VFD (50), where the output from the ECU/VFD (50) to the Electric motor (80), using all of my Patent controlling systems, so the momentary power loss systems can go up to 100% which is higher than normally used, the output of any cycles per second is not used any longer per HP, from the ECU/VFD (50) oversize capacitors (60) can go to 100% using internally/externally or both, starts at any Hertz, the voltage is decreased exactly 10.4165% less Hertz from the (50) ECU/VFD, into the Motor (80), where it's reduced 37.5% also, the first reduction in any cycles is less allowing smaller internal combustion engines (10) Alternators/Generators (30) operating larger electric motors (80).
Abstract:
A motor speed control system includes a motor, a control module and a displaying module. The motor includes a rotor and a stator. The rotor includes at least one induction rotor portion. The stator includes at least one induction stator portion. The induction rotor portion is corresponding to the induction stator portion. The control module is electrically connected to the rotor and the stator. The control module controls an induction rotor current of the induction rotor portion and an induction stator current of the induction stator port on to produce a rotor speed. The control module decreases or turns off the induction rotor current to keep the rotor speed at a predetermined value according to a rotational inertia of the rotor and the induction stator current when the rotor speed reaches the predetermined value. The displaying module displays the rotor speed and variable currents.
Abstract:
A motor control device that controls an exciting current and a torque current separately from each other, and drives an induction machine includes: a first exciting current command generating unit that generates a first exciting current command in accordance with a speed and torque command; a second exciting current command generating unit that includes a magnetic flux control unit generating a second exciting current command by using a difference between a first exciting current command and a magnetic flux estimation value, and a magnetic flux estimating unit generating a magnetic flux estimation value from the second exciting current command, the second exciting current command generating unit outputting a second exciting current command; and a switching unit that selects one of a first exciting current command and a second exciting current command in accordance with a control mode or external information.
Abstract:
A motor drive for driving two-phase motors using a three-phase bridge output stage, and a method of operating the drive. The driven two-phase motor can be a two-phase bipolar motor (such as a hybrid stepping motor). The drive can also be configured so that a single output stage can be used to drive either two-phase or three-phase motors, with or without a feedback sensor. A reference return is provided from one of the three half-bridge output stages with each of the motor phase windings connected between the reference return and one of the other half-bridge outputs. The switches of each half-bridge are modulated so that current can be controlled in each of the two motor phase windings.
Abstract:
A high acceleration rotary actuator motor assembly is provided comprising a plurality of phase motor elements provided in tandem on a shaft, each phase element including a rotor carrying magnets which alternate exposed poles, the rotor being connected to the shaft and surrounded by a stator formed of a plurality of interconnected segmented stator elements having a contiguous winding to form four magnetic poles, the stator being in electrical communication with a phase electric drive unit, wherein each of the poles exert a magnetic force upon the magnets carried by the rotor when the poles are electrically charged by the phase electric drive unit. The rotors and magnets of each phase motor element are offset about the shaft from one another. In addition, the phase motor elements are electrically isolated from one another.
Abstract:
Disclosed herein is a method of controlling the current of a high-speed Switched Reluctance Motor (SRM) using an inverter circuit including a first switching element, a second switching element, a first diode, a second diode and a reactor, wherein the first switching element and the first diode, the second diode and the second switching element are connected to a bridge circuit, and one end of the reactor is connected to the junction of the first switching element and the first diode, and the remaining end of the reactor is connected to the junction of the second diode and the second switching element; and excitation mode, free-wheeling mode-1, the excitation mode, and free-wheeling mode-2 are sequentially performed in a unit period T, and, when the control is terminated, demagnetization is performed.
Abstract:
A unidirectionally-energized brushless DC motor includes a disk attached to a frame, a plurality of plate-like permanent magnets disposed on the disk at equal intervals around the disk, magnetic cores fixed to the frame according to the plurality of permanent magnets, windings each of which is wound around the magnetic core and to which DC power is supplied, a predetermined number of magnetic cores fixed to the frame, and windings each of which is wound around the magnetic core and connected to a power consumption device. The permanent magnets are located such that an angle formed by a straight line passing through the center of the disk and the center of the permanent magnet and a normal line in the center of a magnetic pole plane of the permanent magnet ranges from 0° to 60°.
Abstract:
Disclosed is a series mode modulation configuration and a parallel voltage equivalent modulation configuration. In the series mode modulation configuration a unipolar modulation is utilized. Unipolar modulation utilizes a zero vector and produces a voltage across the load with a frequency factor of 2×. In the parallel voltage equivalent mode modulation configuration there are two H bridges driving two coils with identical current. The H bridges can advantageously be operated out of phase with one another (e.g., 180 out of phase with one another to interleave the currents to further reduce ripple current stress.