Abstract:
Memory of a database management system (DBMS) that is running in a virtual machine is managed using techniques that integrate DBMS memory management with virtual machine memory management. Because of the integration, the effectiveness of DBMS memory management is preserved even though the physical memory allocated to the virtual machine may change during runtime as a result of varying memory demands of other applications, e.g., instances of other virtual machines, running on the same host computer as the virtual machine.
Abstract:
One embodiment is a computer-implemented method of trace collection for a virtual machine that includes: executing a sequence of instructions from an initial state of the virtual machine; accessing an event log of data relating to nondeterministic events, which data includes an execution point; making at least a portion of the data available to the virtual machine when the sequence reaches the execution point; collecting trace information in response to expansion parameters; and storing the trace information in a trace file.
Abstract:
A virtualization platform provides fault tolerance for a primary virtual machine by continuously transmitting checkpoint information of the primary virtual machine to a collector process, such as a backup virtual machine. When implemented on a hardware platform comprising a multi-processor that supports nested page tables, the virtualization platform leverages the nested page table support to quickly identify memory pages that have been modified between checkpoints. The backup virtual machine provides feedback information to assist the virtualization platform in identifying candidate memory pages for transmitting actual modifications to the memory pages rather than the entire memory page as part of the checkpoint information. The virtualization platform further maintains a modification history data structure to identify memory pages that can be transmitted simultaneous with the execution of the primary virtual machine rather than while the primary virtual machine has been stunned.
Abstract:
Replay-time-only functionalities in a computer program are executed only during replay in a virtual machine and are skipped outside of replay. If a replay-time-only functionality is detected during the replay of a program execution in a virtual machine, the replay may be paused and the virtual machine state may be saved. The replay-time-only core functionality is executed. When this execution is complete, a prior state of the virtual machine may be restored and the replay may be resumed.
Abstract:
In a computer system running a primary virtual machine (VM) on virtualization software on a primary virtualized computer system (VCS) and running a secondary VM on virtualization software on a secondary VCS, a method for the secondary VM to provide quasi-lockstep fault tolerance for the primary VM includes: as the primary VM is executing a workload, virtualization software in the primary VCS is: (a) causing predetermined events to be recorded in an event log, (b) keeping output associated with the predetermined events pending, and (c) sending the log entries to the virtualization software in the secondary VCS; as the secondary VM is replaying the workload, virtualization software in the secondary VCS is: (a) sending acknowledgements indicating that log entries have been received; (b) when the virtualization software encounters one of the predetermined events, searching the log entries to determine whether a log entry corresponding to the same event was received from the primary VCS, and if so, comparing data associated with the predetermined event produced by the secondary VM with that of the primary VM; if there is a match, the virtualization software in the secondary VCS transmitting an acknowledgement to the virtualization software in the primary VCS; one of the virtualization software in the primary or secondary VCS dropping the event and the other dispatching the output; and if there is no match, performing a checkpoint resynchronization.
Abstract:
A virtualization platform provides fault tolerance for a primary virtual machine by continuously transmitting checkpoint information of the primary virtual machine to a collector process, such as a backup virtual machine. When implemented on a hardware platform comprising a multi-processor that supports nested page tables, the virtualization platform leverages the nested page table support to quickly identify memory pages that have been modified between checkpoints. The backup virtual machine provides feedback information to assist the virtualization platform in identifying candidate memory pages for transmitting actual modifications to the memory pages rather than the entire memory page as part of the checkpoint information. The virtualization platform further maintains a modification history data structure to identify memory pages that can be transmitted simultaneous with the execution of the primary virtual machine rather than while the primary virtual machine has been stunned.
Abstract:
In a computer system running a primary virtual machine (VM) on virtualization software on a primary virtualized computer system (VCS) and running a secondary VM on virtualization software on a secondary VCS, a method for the secondary VM to provide quasi-lockstep fault tolerance for the primary VM includes: as the primary VM is executing a workload, virtualization software in the primary VCS is: (a) causing predetermined events to be recorded in an event log, (b) keeping output associated with the predetermined events pending, and (c) sending the log entries to the virtualization software in the secondary VCS; as the secondary VM is replaying the workload, virtualization software in the secondary VCS is: (a) sending acknowledgements indicating that log entries have been received; (b) when the virtualization software encounters one of the predetermined events, searching the log entries to determine whether a log entry corresponding to the same event was received from the primary VCS, and if so, comparing data associated with the predetermined event produced by the secondary VM with that of the primary VM; if there is a match, the virtualization software in the secondary VCS transmitting an acknowledgement to the virtualization software in the primary VCS; one of the virtualization software in the primary or secondary VCS dropping the event and the other dispatching the output; and if there is no match, performing a checkpoint resynchronization.
Abstract:
One embodiment is a computer-implemented method of trace collection for a virtual machine that includes: executing a sequence of instructions from an initial state of the virtual machine; accessing an event log of data relating to nondeterministic events, which data includes an execution point; making at least a portion of the data available to the virtual machine when the sequence reaches the execution point; collecting trace information in response to expansion parameters; and storing the trace information in a trace file.
Abstract:
Methods and systems for sharing memory pages in virtual machines are described. Guest memory pages are identified as candidate memory pages. The candidate memory pages are hashed and the hash results of the candidate memory pages are compared. A determination is made on whether a hash match exists between a first candidate memory page and a second candidate memory page. If it is determined that a hash match exists, an anonymous memory page that includes the information of candidate memory pages is created and shared. As a result, embodiments effectively reduce memory overheads by, in one example, exposing a single anonymous memory page to multiple virtual machines.
Abstract:
A virtualization platform provides fault tolerance for a primary virtual machine by continuously transmitting checkpoint information of the primary virtual machine to a collector process, such as a backup virtual machine. When implemented on a hardware platform comprising a multi-processor that supports nested page tables, the virtualization platform leverages the nested page table support to quickly identify memory pages that have been modified between checkpoints. The backup virtual machine provides feedback information to assist the virtualization platform in identifying candidate memory pages for transmitting actual modifications to the memory pages rather than the entire memory page as part of the checkpoint information. The virtualization platform further maintains a modification history data structure to identify memory pages that can be transmitted simultaneous with the execution of the primary virtual machine rather than while the primary virtual machine has been stunned.