Abstract:
Methods for classifying plants by remote sensing and image analysis technology are presented. These methods are useful for evaluating plants and for selecting plants for a plant breeding program which has as its goal to selectively alter phenotype. The methods combine the newer techniques of remote sensing technology to obtain indirect correlates of the traits of interest, with classical pedigree breeding strategies. Thermal and infrared reflectance measures of plant canopies are examples of energy values measured by remote sensing, used to indirectly predict the selected traits.
Abstract:
The present invention relates to breeding methods to enhance the germplasm of a plant. The methods describe the identification and accumulation of preferred haplotype genomic regions in the germplasm of breeding populations of maize (Zea mays) and soybean (Glycine max). The invention also relates to maize and soybean plants comprising preferred haplotypes.
Abstract:
This invention provides recombinant DNA constructs, transgenic plant nuclei and cells with such recombinant DNA construct for expression of proteins that are useful for imparting enhanced agronomic trait(s) to transgenic crop plants. This invention also provides transgenic plants and progeny seed comprising the transgenic plant cells where the plants are selected for having an enhanced trait selected from the group of traits consisting of enhanced water use efficiency, enhanced cold tolerance, increased yield, enhanced nitrogen use efficiency, enhanced seed protein and enhanced seed oil. Also disclosed are methods for manufacturing transgenic seed and plants with enhanced traits.
Abstract:
The present invention relates to breeding methods to enhance the germplasm of a plant. The methods describe the identification and accumulation of preferred haplotype genomic regions in the germplasm of breeding populations of maize (Zea mays) and soybean (Glycine max). The invention also relates to maize and soybean plants comprising preferred haplotypes.
Abstract:
Methods for classifying plants by remote sensing and image analysis technology are presented. These methods are useful for evaluating plants and for selecting plants for a plant breeding program which has as its goal to selectively alter phenotype. The methods combine the newer techniques of remote sensing technology to obtain indirect correlates of the traits of interest, with classical pedigree breeding strategies. Thermal and infrared reflectance measures of plant canopies are examples of energy values measured by remote sensing, used to indirectly predict the selected traits.