Abstract:
The invention relates to a DNA fragment containing a determined gene, the expression of which inhibits the antibiotic and herbicidal effects of Bialaphos and related products.It also relates to recombinant vectors, containing such DNA fragment, which enable this protective gene to be introduced and expressed into cells and plant cells.
Abstract:
A novel method of over expressing genes in plants is provided. This method is based on the RNA amplification properties of plus strand RNA viruses of plants. A chimeric multicistronic gene is constructed containing a plant promoter, viral replication origins, a viral movement protein gene, and one or more foreign genes under control of viral subgenomic promoters. Plants containing one or more of these recombinant RNA transcripts are inoculated with helper virus. In the presence of helper virus, the recombinant transcripts are replicated producing high levels of foreign gene RNA.
Abstract:
A novel method of over expressing genes in plants is provided. This method is based on the RNA amplification properties of plus strand RNA viruses of plants. A chimeric multicistronic gene is constructed containing a plant promoter, viral replication origins, a viral movement protein gene, and one or more foreign genes under control of viral subgenomic promoters. Plants containing one or more of these recombinant RNA transcripts are inoculated with helper virus. In the presence of helper virus recombinant transcripts are replicated producing high levels of foreign gene RNA. Sequences are provided for the high level expression of the enzyme chloramphenicol acetyltransferase in tobacco plants by replicon RNA amplification with helper viruses and movement protein genes derived from the tobamovirus group.
Abstract:
Transgenic pathogen-resistant organism whose genome contains at least two different genes under the control of active promoters with pathogen-inhibiting action. This organism is distinguished by a synergistic pathogen-inhibiting action. This action is evident particularly when the genes code for the gene products chitinase (ChiS, ChiG), glucanase (GluG), protein synthesis inhibitor (PSI) and antifungal protein (AFP).
Abstract:
Transgenic pathogen-resistant organism whose genome contains at least two different genes under the control of active promoters with pathogen-inhibiting action. This organism is distinguished by a synergistic pathogen-inhibiting action. This action is evident particularly when the genes code for the gene products chitinese (ChiS, ChiG), glucanase (GluG), protein synthesis inhibitor (PSI) and antifungal protein (AFR).
Abstract:
The invention is in a process of genetic mapping for plant identification and breeding purposes. The process utilitzes restriction fragment technology and detection of polymorphisms to build up a genomic “fingerprint” for a variety or isolate. The “fingerprint” is then compared to “fingerprints” of other varieties or isolates to determine both the degree of relatedness and homozygosity for identification and breeding purposes.
Abstract:
Single-gene, non-lethal mutations responsible for low phytic acid-containing seeds are selectable by means of a method for assaying seeds which are otherwise phenotypically, or nearly phenotypically, normal. Maize mutants having from 20% to 95% reductions in kernel phytic acid phosphorus compared to the wild-type, without any noticeable reduction in total phosphorus, were isolated by this method. Mutants obtained in accordance with the invention are useful for developing commercial, low phytic acid seed, plant lines.
Abstract:
According to the invention, there is provided inbred corn plants, separately designated 01DIB2 and 01IZB2. This invention thus relates to the plants, seeds and tissue cultures of the fore-mentioned inbred corn plants and to methods for producing a corn plant produced by crossing one of the inbred plants with itself or with another corn plant, such as another inbred. This invention further relates to corn seeds and plants produced by crossing any of the inbred plants 01DIB2 or 01IZB2 with another corn plant, such as another inbred, and to crosses with related species. This invention further relates to the inbred and hybrid genetic complements of the inbred corn plants 01DIB2 and 01IZB2, and also to the RFLP and genetic isozyme typing profiles of such inbred corn plants.
Abstract:
An inbred maize line, designated PH0B4, the plants and seeds of inbred maize line PH0B4, methods for producing a maize plant produced by crossing the inbred line PH0B4 with itself or with another maize plant, and hybrid maize seeds and plants produced by crossing the inbred line PH0B4 with another maize line or plant.
Abstract:
Broadly this invention provides inbred corn line ZS01220. The methods for producing a corn plant by crossing the inbred line ZS01220 are encompassed by the invention. Additionally, the invention relates to the various parts of inbred ZS01220 including culturable cells. This invention relates to hybrid corn seeds and plants produced by crossing the inbred line ZS01220 with at least one other corn line.