摘要:
A multi-checkpoint type clustered animal counting device is proposed, which is capable of providing a counting function that can be used for statistically determining the number of animals (such as fruit flies) within a region such as farmland or garden. The proposed animal counting device is characterized by the utilized to at least two object sensors, wherein the first object sensor is disposed at a first checkpoint while the second object sensor is disposed at a second checkpoint, and wherein the first object sensor is initially set to power-on state while the second object sensor is initially set to power-off state and can be switched on only when the first object sensor is triggered. When the second object sensor is triggered, the counting operation will increase the output count number by one. This feature allows a more accurate result and can help save power consumption.
摘要:
An automated remote water quality monitoring system with wireless communication capability and the method thereof is provided. A water quality monitoring system is provided, including: a plurality of monitoring apparatuses, each of which has a radio communication module transmitting at least one environmental parameter; a server receiving the at least one environmental parameter via a base station; and a gateway being one selected from a group consisting of the plurality of monitoring apparatuses, being geographically the closest one to the base station, receiving the at least one environmental parameter and transmitting the at least one environmental parameter to the base station.
摘要:
A positioning method for a sensor node is provided, and the method includes steps of: providing a first antenna having a first omnidirectional radiation pattern on a first plane; rotating the first antenna about an axis substantially parallel to the first plane; transmitting a wireless signal while the first antenna rotates about the axis for every a predetermined central angle; receiving the wireless signal at the sensor node; obtaining Received Signal Strength Indications (RSSIs) of the respective wireless signals; and determining a location of the sensor node according to the RSSIs.
摘要:
A wireless-linked remote ecological environment monitoring system is proposed, which is characterized by the use of a sensor network such as WSN (wireless sensor network) installed at the remote site for collecting ecological data, and the use of a public wireless communication system such as GSM (Global System for Mobile Communications) for transferring all the collected ecological data to a back-end host server unit where the ecological data are compiled into webpages for posting on a website. This feature allows the research/management personnel to browse the ecological data simply by linking a network workstation via a network system such as the Internet to the website, without having to travel to the remote site and collect ecological data by human labor.
摘要:
A multi-checkpoint type clustered animal counting device is proposed, which is capable of providing a counting function that can be used for statistically determining the number of animals (such as fruit flies) within a region such as farmland or garden. The proposed animal counting device is characterized by the utilized to at least two object sensors, wherein the first object sensor is disposed at a first checkpoint while the second object sensor is disposed at a second checkpoint, and wherein the first object sensor is initially set to power-on state while the second object sensor is initially set to power-off state and can be switched on only when the first object sensor is triggered. When the second object sensor is triggered, the counting operation will increase the output count number by one. This feature allows a more accurate result and can help save power consumption.
摘要:
A wireless sensor network gateway unit is proposed, which is designed for integration to a wireless sensor network (WSN) for providing a gateway function with a failed link auto-redirecting capability for the wireless sensor network. The proposed WSN gateway unit is characterized by the provision of an failed link auto-redirecting capability, which can respond to the failure of any sensor node in the WSN system by performing a failed link auto-redirecting operation for redirecting the down-linked good sensor nodes for linking to a nearby good sensor node to thereby allow the down-linked good sensor nodes to be nevertheless able to transfer data to the WSN gateway unit of the invention. This feature allows the WSN gateway unit of the invention to maintain good operational reliability for the WSN system.
摘要:
A routing method for a network is provided. The routing method includes the steps of a) selecting one of a plurality of basic nodes as a cluster head; b) broadcasting a first message by the cluster head; c) continuing to broadcast the first message by any of the plurality of basic nodes which receives the first message, until all the plurality of basic nodes receive the first message; and d) selecting a corresponding father node by each of the plurality of basic nodes based on an information associated with the first message.
摘要:
A positioning method for a sensor node is provided, and the method includes steps of: providing a first antenna having a first omnidirectional radiation pattern on a first plane; rotating the first antenna about an axis substantially parallel to the first plane; transmitting a wireless signal while the first antenna rotates about the axis for every a predetermined central angle; receiving the wireless signal at the sensor node; obtaining Received Signal Strength Indications (RSSIs) of the respective wireless signals; and determining a location of the sensor node according to the RSSIs.
摘要:
A front-end gateway unit is designed for integration to a remote ecological environment monitoring system that is equipped with a wireless sensor network (WSN) system installed at a remote site, such as a farmland or a garden, for the purpose of allowing the WSN system to exchange data with a back-end host server via a wireless communication system. The front-end gateway unit is characterized by the capability of using either the WSN system or a built-in sensing module for collecting ecological data, and the capability of combining geographical location data in the ecological data. This feature allows the collection of a comprehensive set of ecological data (including geographical location, temperature, humidity, sunlight data, wind speed, and pest number) for transfer to the back-end host server, such that research/management personnel at the local site can conveniently browse these ecological data and learn the ecological conditions of the remotely monitored area.
摘要:
A wireless-linked remote ecological environment monitoring system is proposed, which is characterized by the use of a sensor network such as WSN (wireless sensor network) installed at the remote site for collecting ecological data, and the use of a public wireless communication system such as GSM (Global System for Mobile Communications) for transferring all the collected ecological data to a back-end host server unit where the ecological data are compiled into webpages for posting on a website. This feature allows the research/management personnel to browse the ecological data simply by linking a network workstation via a network system such as the Internet to the website, without having to travel to the remote site and collect ecological data by human labor.