摘要:
The present invention relates to an integrated circuit package comprising at least one substrate, each substrate including at least one layer, at least one semiconductor die, at least one terminal, and an antenna located in the integrated circuit package, but not on said at least one semiconductor die. The conducting pattern comprises a curve having at least five sections or segments, at least three of the sections or segments being shorter than one-tenth of the longest free-space operating wavelength of the antenna, each of the five sections or segments forming a pair of angles with each adjacent segment or section, wherein the smaller angle of each of the four pairs of angles between sections or segments is less than 180° (i.e., no pair of sections or segments define a longer straight segment), wherein at least two of the angles are less than 115°, wherein at least two of the angles are not equal, and wherein the curve fits inside a rectangular area the longest edge of which is shorter than one-fifth of the longest free-space operating wavelength of the antenna.
摘要:
An antenna includes at least two radiating arm structures made of or limited by a conductor, superconductor or semiconductor material. The two arms are coupled through a region on first and second superconducting arms such that the combined structure forms a small antenna with broadband behavior, multiband behavior or a combination thereof. The coupling between the two radiating arms is obtained via the shape and spatial arrangement thereof, in which at least one portion on each arm is placed in close proximity to each other (e.g., at a distance smaller than 1/10 of the longest free-space operating wavelength) to allow electromagnetic fields in one arm to be transferred to the other through close proximity regions. The proximity regions are spaced from the feeding port of the antenna (e.g., greater than 1/40 of the free-space longest operating wavelength) and specifically exclude the feeding port of the antenna.
摘要:
A triple-band antenna array for cellular base stations operates at a first frequency band and at a second frequency band within a first frequency range, and also at a third frequency band within a second frequency range. The triple-band antenna array comprises a first set of radiating elements operating at the first frequency band, a second set of radiating elements operating at the second frequency band, a third set of radiating elements operating at both the third and the first frequency bands, and a fourth set of radiating elements operating at both the third and the second frequency bands. The radiating elements are arranged such that at least some of the radiating elements of the first and third sets are interlaced, and at least some of the radiating elements of the second and fourth sets are interlaced.
摘要:
A multifunction wireless device having at least one of multimedia functionality and smartphone functionality, the multifunction wireless device including an upper body and a lower body, the upper body and the lower body being adapted to move relative to each other in at least one of a clamshell, a slide, and a twist manner. The multifunction wireless device further includes an antenna system disposed within at least one of the upper body and the lower body and having a shape with a level of complexity of an antenna contour defined by complexity factors F21 having a value of at least 1.05 and not greater than 1.80 and F 32 having a value of at least 1.10 and not greater than 1.90.
摘要:
A multi-band antenna includes at least one structure useable at multiple frequency ranges. The structure includes at least two levels of detail, with one level of detail making up another level of detail. The levels of detail are composed of closed plane figures bounded by the same number of sides. An interconnection circuit links the multi-band antenna to an input/output connector and incorporates adaptation networks, filters or diplexers. Each of the closed plane figures is linked to at least one other closed plane figure to exchange electromagnetic power. For at least 75% of the closed plane figures, the region or area of contact, intersection, or interconnection between the closed plane figures is less than 50% of their perimeter or area. Not all of the closed plane figures have the same size, and the perimeter of the structure has a different number of sides than its constituent closed plane figures.
摘要:
A wireless device includes at least one slim radiating system having a slim radiating structure and a radio-frequency system. The slim radiating structure includes one or more booster bars. The booster bar has slim width and height factors that facilitate its integration within the wireless device and the excitation of a resonant mode in the ground plane layer, and has a location factor that enables it to achieve the most favorable radio-frequency performance for the available space to allocate the booster bar. The at least one slim radiating system may be configured to transmit and receive electromagnetic wave signals in one or more frequency regions of the electromagnetic spectrum.
摘要:
A wireless handheld or portable device includes a communication module with a MIMO system that provides multiband MIMO operation in first and second frequency bands. The MIMO system includes first and second radiating systems, a ground plane common to the two radiating systems, first and second radio frequency systems, and a MIMO module. The first and second radiating systems both operate in the first and second frequency bands and respectively include first and second radiating structures coupled to the ground plane, which respectively have first and second radiation boosters that fit in an imaginary sphere having a diameter smaller than ¼ of a diameter of a radiansphere of a longest wavelength of the first frequency band. The first and second radiofrequency systems respectively modify impedance of the first and second radiating structures to provide impedance matching to the first and second radiating systems within the first and second frequency bands.
摘要:
A wireless handheld or portable device includes a communication module with a MIMO system that provides multiband MIMO operation in first and second frequency bands. The MIMO system includes first and second radiating systems, a ground plane common to the two radiating systems, first and second radio frequency systems, and a MIMO module. The first and second radiating systems both operate in the first and second frequency bands and respectively include first and second radiating structures coupled to the ground plane, which respectively have first and second radiation boosters that fit in an imaginary sphere having a diameter smaller than ¼ of a diameter of a radiansphere of a longest wavelength of the first frequency band. The first and second radiofrequency systems respectively modify impedance of the first and second radiating structures to provide impedance matching to the first and second radiating systems within the first and second frequency bands.
摘要:
The present invention refers to an antenna less wireless handheld or portable device comprising a communication module including a radiating system capable of transmitting and receiving electromagnetic wave signals in a first frequency region and in a second frequency region, wherein the highest frequency of the first frequency region is lower than the lowest frequency of the second frequency region. The radiating system comprising a radiating structure and at least one internal port, wherein the input impedance of the radiating structure at the/each internal port when disconnected from the radiofrequency system has an imaginary part not equal to zero for any frequency of the first frequency region; and wherein said radiofrequency system modifies the impedance of the radiating structure, providing impedance matching to the radiating system in the at least two frequency regions of operation of the radiating system.
摘要:
An apparatus includes an antenna concealed within a portable communication device and configured to operate in non-overlapping frequency bands. The antenna includes an antenna element with a multilevel structure of geometric elements arranged to define empty spaces to provide winding current paths through the antenna element which circumvent the empty spaces, the winding current paths respectively corresponding to the non-overlapping frequency bands. The antenna further includes a ground plane, with the antenna element being electrically coupled to the ground plane. The antenna element provides a substantially similar impedance level and radiation pattern in the non-overlapping frequency bands. The geometric elements are arranged such that the antenna element does not comprise a group of single band antennas that respectively operate in the non-overlapping frequency bands, and the antenna element is not a fractal type antenna element.