Abstract:
A differential current steering (CS) circuit uses feedback from the differential output nodes A and B to cause current steering devices (e.g., MOSFETs) to effectively exhibit an infinite output impedance when conducting. Therefore, the signal on the output nodes A or B does not significantly change the voltage at the common node, This is particularly useful when the differential output nodes are connected to differential output buses in a digital-to-analog converter. The circuit dynamically cancels, though feedback, the signal induced at the common node by the signal present at the “steered” output node. Therefore, the CS circuit effectively presents an infinite output impedance between the common node and the output nodes. In some cases, it may be desirable to not create a substantially infinite output impedance for the CS circuit but control the impedance to a predefined level to counter other distortions in the system.
Abstract:
An oversampling delta-sigma analog-to-digital converter suitable for single-cycle operation is provide. In a preferred embodiment of the present invention, only one multiply-accumulate processor is present in the digital filtering stage for decimating the output sequence R(I). A system controller produces precisely timed modulator enable (EnM) and digital filter enable (EnF) signals for coordinating activation of certain circuit elements and for managing power consumption of the system.
Abstract:
In a driver circuit for a twisted pair cable, a compensator for preventing appreciable common mode current flow into or out of the twisted pair cable in response to the device receiving a wide range of common mode voltage bias levels. A wide range of external bias voltages may be received as a result of variations in the ground node voltages of two coupled devices. The compensator circuit utilizes a feed back loop and monitors the bias voltage received on the twisted pair cable. As the magnitude of the common mode current increases due to external bias voltage variation from a reference bias voltage, the current flow of p-channel transistors, coupled in an arrangement of the present invention, is increased (or decreased, as necessary) so that reduced common mode current flows onto the twisted pair cable. The present invention reduces appreciable common mode current flow through the twisted pair cable from the driver that are due to variations in the external bias voltage between communication devices. The present invention provides high common mode output impedance for the driver circuit by altering the effective common mode common mode early voltage characteristics of the driver circuit while utilizing shorter channel length transistors for high speed communication capacity. The present invention also offers reduced current supply capacity of the common mode bias voltage source. The present invention operates ideally within driver circuits compatible with the IEEE P1394 communication standard.
Abstract:
The invention provides apparatus and methods for generating the coefficients of a finite impulse response digital filter used in signal sample rate conversion. Sequence generation circuitry provides a discrete-time sequence x(n) that is coupled to a plurality of cascaded discrete-time integrators that generate the filter coefficients h(n). Bit serial and interleaved bit serial implementations are described that provide efficient coefficient generators. The described apparatus and methods also may be used to efficiently implement a finite impulse response digital filter for an oversampling analog-to-digital converter.
Abstract:
A differential current steering (CS) circuit uses feedback from the differential output nodes A and B to cause current steering devices (e.g., MOSFETs) to effectively exhibit an infinite output impedance when conducting. Therefore, the signal on the output nodes A or B does not significantly change the voltage at the common node, This is particularly useful when the differential output nodes are connected to differential output buses in a digital-to-analog converter. The circuit dynamically cancels, though feedback, the signal induced at the common node by the signal present at the “steered” output node. Therefore, the CS circuit effectively presents an infinite output impedance between the common node and the output nodes. In some cases, it may be desirable to not create a substantially infinite output impedance for the CS circuit but control the impedance to a predefined level to counter other distortions in the system.
Abstract:
A novel sampling system having a sampling device responsive to an analog input signal and a reference signal for providing corresponding charges. A switching circuit is provided to supply the input signal and the reference signal to the sampling device. The switching circuit is controlled to supply the input signal and the reference signal to the sampling device so as provide a substantially zero total charge taken by the sampling device from a source of the input signal. One application of the foregoing is in analog-to-digital conversion.
Abstract:
An analog-to-digital converter according to the invention is provided. The analog-to-digital converter preferably includes an analog input signal, a first reference signal, a second reference signal, and a range compression signal. The range compression signal is preferably characterized by a magnitude greater than the first reference signal and smaller than the second reference signal. In addition, when the analog input signal is sampled N times and the range compression signal is sampled N1 times, a compression factor related at least in part to the ratio N1/(N+N1) is obtained.
Abstract:
An analog-to-digital converter according to the invention is provided. The analog-to-digital converter preferably includes an analog input signal, a first reference signal, a second reference signal, and a range compression signal. The range compression signal is preferably characterized by a magnitude greater than the first reference signal and smaller than the second reference signal. In addition, when the analog input signal is sampled N times and the range compression signal is sampled N1 times, a compression factor that is based at least in part on N1/(N+N1) is obtained.
Abstract:
A novel sampling system having a sampling device responsive to an analog input signal and a reference signal for providing corresponding charges. A switching circuit is provided to supply the input signal and the reference signal to the sampling device. The switching circuit is controlled to supply the input signal and the reference signal to the sampling device so as provide a substantially zero total charge taken by the sampling device from a source of the input signal. One application of the foregoing is in analog-to-digital conversion.
Abstract:
The invention provides methods and apparatus for improving the direct current (DC) offset performance of an oversampling analog-to-digital (A/D) converter, including A/D converters that include an oversampling quantizer such as a single or multi-bit Δ-Σ modulator, successive approximation quantizer, flash quantizer, pipelined quantizer or other suitable oversampling quantizer. A customized buffer/amplifier may be inserted between an analog chopper and a signal processing chain. The customized buffer/amplifier is optimized for input noise and the signal chain compensates for poor DC performance. The result is a buffered analog-to-digital converter with both low input noise and very good DC accuracy.