Method and system for cross-sectioning a sample with a preset thickness or to a target site

    公开(公告)号:USRE50001E1

    公开(公告)日:2024-06-04

    申请号:US17465076

    申请日:2021-09-02

    Abstract: Linear fiducials including notches or chevrons with known angles relative to each other are formed such that each branch of a chevron appears in a cross-sectional face of the sample as a distinct structure. Therefore, when imaging the cross-section face during the cross-sectioning operation, the distance between the identified structures allows unique identification of the position of the cross-section plane along the Z axis. Then a direct measurement of the actual position of each slice can be calculated, allowing for dynamic repositioning to account for drift in the plane of the sample and also dynamic adjustment of the forward advancement rate of the FIB to account for variations in the sample, microscope, microscope environment, etc. that contributes to drift. An additional result of this approach is the ability to dynamically calculate the actual thickness of each acquired slice as it is acquired. Linear fiducials including notches or chevrons with known angles relative to each other are formed such that each branch of a chevron appears in a cross-sectional face of the sample as a distinct structure. Therefore, when imaging the cross-section face during the cross-sectioning operation, the distance between the identified structures allows unique identification of the position of the cross-section plane along the Z axis. Then a direct measurement of the actual position of each slice can be calculated, allowing for dynamic repositioning to account for drift in the plane of the sample and also dynamic adjustment of the forward advancement rate of the FIB to account for variations in the sample, microscope, microscope environment, etc. that contributes to drift. An additional result of this approach is the ability to dynamically calculate the actual thickness of each acquired slice as it is acquired.

    MICROSCOPY IMAGING METHOD AND SYSTEM

    公开(公告)号:US20210159046A1

    公开(公告)日:2021-05-27

    申请号:US17138329

    申请日:2020-12-30

    Abstract: Linear fiducials including notches or chevrons with known angles relative to each other are formed such that each branch of a chevron appears in a cross-sectional face of the sample as a distinct structure. Therefore, when imaging the cross-section face during the cross-sectioning operation, the distance between the identified structures allows unique identification of the position of the cross-section plane along the Z axis. Then a direct measurement of the actual position of each slice can be calculated, allowing for dynamic repositioning to account for drift in the plane of the sample and also dynamic adjustment of the forward advancement rate of the FIB to account for variations in the sample, microscope, microscope environment, etc. that contributes to drift. An additional result of this approach is the ability to dynamically calculate the actual thickness of each acquired slice as it is acquired.

    METHOD FOR CROSS-SECTION SAMPLE PREPARATION
    4.
    发明申请

    公开(公告)号:US20200264115A1

    公开(公告)日:2020-08-20

    申请号:US16754925

    申请日:2018-10-12

    Abstract: A novel method for cross-section sample preparation has a sample oriented normal to an SEM/GFIS or other imaging column via a stage, and is operated upon by an FIB to form the cross-section pre-lamella within the sample, followed by an approximate 90° rotation with no tilt of the stage for cut out by the FIB. Asymmetric trenches are milled to have a three-dimensional depth profile to ensure that the FIB has clear line of sight to a face of the resulting pre-lamella when the sample has been rotated. The three-dimensional depth profile further minimizes overall milling time required for the preparation of the pre-lamella.

    Microscopy imaging method and system

    公开(公告)号:US09812290B2

    公开(公告)日:2017-11-07

    申请号:US15420844

    申请日:2017-01-31

    Abstract: Notches or chevrons with known angles relative to each other are formed on a surface of the sample, where each branch of a chevron appears in a cross-sectional face of the sample as a distinct structure. Therefore, when imaging the cross-section face during the cross-sectioning operation, the distance between the identified structures allows unique identification of the position of the cross-section plane along the Z axis. Then a direct measurement of the actual position of each slice can be calculated, allowing for dynamic repositioning to account for drift in the plane of the sample and also dynamic adjustment of the forward advancement rate of the FIB to account for variations in the sample, microscope, microscope environment, etc. that contributes to drift. An additional result of this approach is the ability to dynamically calculate the actual thickness of each acquired slice as it is acquired.

    Method and system for iteratively cross-sectioning a sample to correlatively targeted sites

    公开(公告)号:US11462383B2

    公开(公告)日:2022-10-04

    申请号:US17138329

    申请日:2020-12-30

    Abstract: Linear fiducials including notches or chevrons with known angles relative to each other are formed such that each branch of a chevron appears in a cross-sectional face of the sample as a distinct structure. Therefore, when imaging the cross-section face during the cross-sectioning operation, the distance between the identified structures allows unique identification of the position of the cross-section plane along the Z axis. Then a direct measurement of the actual position of each slice can be calculated, allowing for dynamic repositioning to account for drift in the plane of the sample and also dynamic adjustment of the forward advancement rate of the FIB to account for variations in the sample, microscope, microscope environment, etc. that contributes to drift. An additional result of this approach is the ability to dynamically calculate the actual thickness of each acquired slice as it is acquired.

    Method for cross-section sample preparation

    公开(公告)号:US11366074B2

    公开(公告)日:2022-06-21

    申请号:US16754925

    申请日:2018-10-12

    Abstract: A novel method for cross-section sample preparation has a sample oriented normal to an SEM/GFIS or other imaging column via a stage, and is operated upon by an FIB to form the cross-section pre-lamella within the sample, followed by an approximate 90° rotation with no tilt of the stage for cut out by the FIB. Asymmetric trenches are milled to have a three-dimensional depth profile to ensure that the FIB has clear line of sight to a face of the resulting pre-lamella when the sample has been rotated. The three-dimensional depth profile further minimizes overall milling time required for the preparation of the pre-lamella.

    Method and system for cross-sectioning a sample with a preset thickness or to a target site

    公开(公告)号:US10886100B2

    公开(公告)日:2021-01-05

    申请号:US16784708

    申请日:2020-02-07

    Abstract: Linear fiducials including notches or chevrons with known angles relative to each other are formed such that each branch of a chevron appears in a cross-sectional face of the sample as a distinct structure. Therefore, when imaging the cross-section face during the cross-sectioning operation, the distance between the identified structures allows unique identification of the position of the cross-section plane along the Z axis. Then a direct measurement of the actual position of each slice can be calculated, allowing for dynamic repositioning to account for drift in the plane of the sample and also dynamic adjustment of the forward advancement rate of the FIB to account for variations in the sample, microscope, microscope environment, etc. that contributes to drift. An additional result of this approach is the ability to dynamically calculate the actual thickness of each acquired slice as it is acquired.

Patent Agency Ranking