Abstract:
A method of producing a drill bit, such as for drilling a well into an earth formation, includes forming a bit body having a plurality of blades. Each of the plurality of blades includes a forward facing face with respect to a direction of rotation of the bit. The forward facing face includes individual cutter pockets at least partially recessed into the forward facing face. The method also includes securing a cutting element at least partially within each of the individual cutter pockets. Each cutting element has an abrasion resistance. Each of the plurality of blades is formed of a blade material having an abrasion resistance that is less than the abrasion resistance of the cutting element.
Abstract:
A drilling assembly for drilling two or more casing sections into a subterranean formation includes a first casing bit and a second casing bit, each casing bit of different diameter affixed to a respective casing section of different diameter, at least two casing bits and the two or more casing sections arranged in a telescoping relationship. The second casing bit includes a bit body having a face on which two different types of cutting elements are disposed, the first type being cutting elements for drilling at least one subterranean formation and the second type being cutting elements for drilling through the first casing bit.
Abstract:
A reaming tool includes a tubular body having a nose portion with a concave center. A plurality of blades defining junk slots therebetween extend axially behind the nose portion and taper outwardly from the exterior of the tubular body. Rotationally leading edges of the blades carry a plurality of cutting elements from the axially leading ends. Selected surfaces and edges of the blades bear tungsten carbide, which may comprise crushed tungsten carbide. The shell of the nose is configured to ensure drillout from the centerline thereof toward the side wall of the tubular body. A method of drilling out a reaming tool is also disclosed.
Abstract:
A reaming tool includes a tubular body having a nose portion with a concave center. A plurality of blades defining junk slots therebetween extend axially behind the nose and taper outwardly from the exterior of the tubular body. Rotationally leading edges of the blades carry a plurality of cutting elements from the axially leading ends. Selected surfaces and edges of the blades bear tungsten carbide, which may comprise crushed tungsten carbide. The shell of the nose is configured to ensure drillout from the centerline thereof toward the side wall of the tubular body. A method of drilling out a reaming tool is also disclosed.
Abstract:
A drill bit is provided that employs a plurality of discrete, post-like, abrasive, particulate-impregnated cutting structures extending upwardly from the bit face. The cutting structures may be disposed on abrasive, particulate-impregnated blades that also define a plurality of fluid passages on the bit face. One or more of the cutting structures may include outermost ends that exhibit a cross-sectional geometry that is elongated in a direction along a defined axis. The cutting structures may be oriented such that the defined axis is neither coplanar with, nor parallel to, an intended rotational path of the at least one discrete cutting structure during operation of the bit. In one embodiment, the cutting structure is oriented such that the defined axis is at an acute angle relative to a tangent of the intended rotational path for the associated cutting structure. Other or different features may include, for example, additional, differently configured cutting elements.
Abstract:
A casing bit, which may comprise a composite structure, for drilling a casing section into a subterranean formation, and which may include a portion configured to be drilled therethrough. Cutting elements and methods of use may be included. Adhesive, solder, electrically disbonding material, and braze affixation of a cutting element may be included. Differing abrasive material amount, characteristics, and size of cutting elements may be included. Telescoping casing sections and bits may be included. Embodiments may include: at least one gage section extending from the nose portion, at least one rotationally trailing groove formed in at least one of the plurality of blades, a movable blade, a leading face comprising superabrasive material, at least one of a drilling fluid nozzle and a sleeve, grooves for preferential failure, at least one rolling cone affixed to the nose portion, at least one sensor, discrete cutting element retention structures, and percussion inserts.
Abstract:
A casing bit, which may comprise a composite structure, for drilling a casing section into a subterranean formation, and which may include a portion configured to be drilled therethrough, is disclosed. Cutting elements and methods of use are disclosed. Adhesive, solder, electrically disbonding material, and braze affixation of a cutting element are disclosed. Differing abrasive material amount, characteristics, and size of cutting elements are disclosed. Telescoping casing sections and bits are disclosed. Aspects and embodiments are disclosed including: at least one gage section extending from a nose portion, at least one rotationally trailing groove formed in at least one of the plurality of blades, a movable blade, a leading face comprising superabrasive material, at least one of a drilling fluid nozzle and a sleeve, grooves for preferential failure, at least one rolling cone affixed to the nose portion, at least one sensor, discrete cutting element retention structures, and percussion inserts.
Abstract:
A method of optimizing drill bit design and an optimized drill bit for drilling a well into an earth formation comprising a bit body; a number of blades spaced around the bit body, each blade having a curved outer edge and a forward face; a first row of cutter pockets recessed into the face along the outer edge of each blade; a second group of cutter pockets recessed into the face of each blade offset from the first row; and a plurality of cutting elements, each cutting element being brazed into a different one of the cutter pockets.
Abstract:
A drill bit includes a bit body having a face on which two different types of cutters are disposed, the first type being cutting elements suitable for drilling at least one subterranean formation and the second type being at least one of an abrasive cutting structure and an abrasive cutting element suitable for drilling through a casing shoe, reamer shoe, casing bit, casing or liner string and cementing equipment or other components, as well as cement. Methods of forming earth-boring tools are also disclosed.
Abstract:
A drill bit includes a bit body having a face on which two different types of cutting elements are disposed, the first type being cutting elements for drilling at least one subterranean formation and the second type being cutting elements for drilling through a casing bit disposed at an end of a casing or liner string and cementing equipment or other components. The second type of cutting elements exhibits a relatively greater exposure than the first type of cutting elements, so as to engage the interior of the casing bit and, if present, cementing equipment components and cement to drill therethrough, after which the second type of cutting elements quickly wears upon engagement with the subterranean formation material exterior to the casing bit, and the first type of cutting elements continues to drill the subterranean formation.