Abstract:
Cutting elements for earth-boring tools comprise a substrate including at least one material selected from the group consisting of CoCr, CoCrMo, CoCrW, and Ti. A polycrystalline superabrasive material may be attached to the substrate. Earth-boring tools comprise a body. At least one cutting element is attached to the body. The at least one cutting element comprises a substrate including at least one material selected from the group consisting of CoCr, CoCrMo, CoCrW, and Ti. A polycrystalline superabrasive material may be attached to the substrate. Methods of forming cutting elements for earth-boring tools comprise disposing a substrate including at least one material selected from the group consisting of CoCr, CoCrMo, CoCrW, and Ti in a container. Particles of superabrasive material may be disposed in the container. The particles of superabrasive material may be sintered with the substrate in the container to form a polycrystalline superabrasive material attached to the substrate.
Abstract:
Cutting elements for downhole cutting tools comprise a top surface having a cutting surface portion and a cutting profile disposed across the top surface. The cutting elements comprise first and second longitudinal side surfaces and first and second lateral side surfaces, each having a respective cross-section. The cutting profile can be disposed on the cutting surface either asymmetrically or symmetrically. Asymmetrical disposition permits two cutting elements to be arranged facing each other to cover a center point of a cutting tool. The cutting edge of asymmetrical or symmetrically disposed cutting profiles can have a shape that facilitates self-sharpening during cutting.
Abstract:
A downhole cutting tool includes, a body, a first contoured cutting element in operable communication with the body, and at least one contingency contoured cutting element in operable communication with the first contoured cutting element and the body. A contour of the at least one contingency contoured cutting element substantially matches a contour of the first contoured cutting element, and the at least one contingency contoured cutting element is maintainable in reserve and positioned to substitute for the first contoured cutting element if the first contoured cutting element becomes detached.
Abstract:
A method of optimizing drill bit design and an optimized drill bit for drilling a well into an earth formation comprising a bit body; a number of blades spaced around the bit body, each blade having a curved outer edge and a forward face; a first row of cutter pockets recessed into the face along the outer edge of each blade; a second group of cutter pockets recessed into the face of each blade offset from the first row; and a plurality of cutting elements, each cutting element being brazed into a different one of the cutter pockets.
Abstract:
A roller cone drill bit includes a bit body adapted to be coupled to a drill string, a bearing journal depending from the bit body, and a single roller cone rotatably attached to the bearing journal. The single roller cone has a plurality of cutting elements, where at least one of the plurality of cutting elements is formed of an inner region that is at least partially surrounded by an outer region, where the inner region is more abrasive resistant than the outer region. Such an arrangement in a single roller cone bit allows the at least one cutting element to be “self-sharpening.”
Abstract:
A cutting, self-rotating, and self-sharpening tool has a rotatable cutting element, generally circular, which is mounted and displaced so that cutting element has an attack angle between 90.degree. and 120.degree., and a skew angle between 5.degree. and 40.degree.. The cutting element has a convex front face and relief and rake angles that vary along the perimeter of the cutting edge.
Abstract:
A monolithic long lasting rotary drill bit for drilling a hole into a geological formation having at least one hardened rod which has a length of at least three times its diameter composed of hard material such as tungsten carbide that is cast into a relatively soft steel matrix material to make a rotary drill bit that compensates for wear on the bottom of the drill bit and that also compensates for lateral wear of the drill bit using passive, self-actuating mechanisms, triggered by bit wear to drill relatively constant diameter holes.
Abstract:
A diamond drill bit for drilling bore holes in earth formations having a body connectible to a drilling string, and provided with a matrix portion of hard metals in which diamonds are surface set at the outer gage portion and adjacent to the bit axis, the hard metal matrix having preformed grooves in which preformed diamond impregnated segments are inserted, which are a mixture of diamonds and hard metals, and secured to the matrix portion by brazing material. During bit rotation in the bore hole, the segments cut the major portion of the hole, the diamonds being dispersed throughout the mass of each segment for selective release from the segment as the diamonds become damaged and lost, thereby exposing new diamonds in the segment at a controlled rate, and thereby producing continual resharpening of the segments. As a result, the drilling rate of the bit is increased, as well as the length of hole drilled.
Abstract:
A diamond drill coring bit having an annular crown and inner and outer concentric side surfaces. The crown is formed from a number of radially extending composite segments spaced apart circumferentially by a circumferential spacer material, all integrally bonded together. Each composite segment consists of a number of diamond impregnated segments spaced radially from each other by a radial spacer material. The diamond impregnated segments have greater abrasion resistance than that of the radial spacer material such that the radial spacer material will wear at a controlled rate greater than that of the diamond impregnated segments. The radial spacer material has greater abrasion resistance than that of the circumferential spacer material such that the circumferential spacer material will wear at a controlled rate greater than that of the radial spacer material but not so great as to prematurely expose the composite segments. The circumferential spacer material has good thermal conductivity to conduct heat from the composite segments, and substantial ductility to absorb drilling shocks.