Abstract:
The present general inventive concept relates to apparatuses and/or methods for measuring an in-phase and quadrature (IQ) imbalance. In one embodiment, a signal generator can provide a first IQ signal of a DC component during a first period and the first IQ signal of a first angular frequency during a second period, an IQ up-conversion mixer can up-convert the first IQ signal by a second angular frequency during the first period and up-convert the first IQ signal by a third angular frequency during the second period to output a second IQ signal, an IQ down-conversion mixer can down-convert the second IQ signal by the third angular frequency to output a third IQ signal and an IQ imbalance detector can obtain a first IQ imbalance (e.g., Rx IQ imbalance) from the third IQ signal during the first period and a second IQ imbalance (e.g., Tx/Rx IQ imbalance) during the second period.
Abstract:
The application discloses embodiments of methods and/or systems for compensating a transmission carrier leakage of an up-conversion mixer, a tranceiving circuit or apparatus embodying the same. One embodiment of a method can include detecting an I channel DC offset DCI0 and a Q channel DC offset DCQ0 generated by a reception carrier leakage from an output of a down-conversion mixer, detecting an I channel DC offset DCI and a Q channel DC offset DCQ from the output of the down-conversion mixer while varying a compensation parameter being inputted to an up-conversion mixer that has its output coupled to an input of the down-conversion mixer to determine the compensation parameter that can reduce or minimize a transmission carrier leakage. A combination of a transmission baseband signal and the determined compensation parameter can be transmitted using the up-conversion mixer and an antenna to compensate for the transmission carrier leakage.
Abstract:
The present general inventive concept relates to apparatuses and/or methods for measuring an IQ imbalance. In one embodiment, a signal generator can provide a first IQ signal of a DC component during a first period and the first IQ signal of a first angular frequency during a second period, an IQ up-conversion mixer can up-convert the first IQ signal by a second angular frequency during the first period and up-convert the first IQ signal by a third angular frequency during the second period to output a second IQ signal, an IQ down-conversion mixer can down-convert the second IQ signal by the third angular frequency to output a third IQ signal and an IQ imbalance detector can obtain a first IQ imbalance (e.g., Rx IQ imbalance) from the third IQ signal during the first period and a second IQ imbalance (e.g., Tx/Rx IQ imbalance) during the second period.
Abstract:
The present invention relates to an apparatus and a method for measuring an in phase and quadrature (IQ) imbalance. One embodiment according to the present general inventive concept can provide a method for measuring a Tx IQ imbalance generated in an IQ up-conversion mixer and an Rx IQ imbalance generated in an IQ down-conversion mixer, that includes measuring a first IQ imbalance corresponding to a first combination of the Rx IQ imbalance with the Tx IQ imbalance, measuring a second IQ imbalance corresponding to a second combination of the Rx IQ imbalance with the Tx IQ imbalance and obtaining the Tx IQ imbalance and the Rx IQ imbalance from the first IQ imbalance and the second IQ imbalance.
Abstract:
The present general inventive concept relates to apparatuses and/or methods for measuring an in-phase and quadrature (IQ) imbalance. In one embodiment, a detector can measure an error caused by an IQ imbalance using a first IQ signal including a desired signal and a corresponding image signal by the IQ imbalance. The detector can include a derotator to derotate the first IQ signal by a first angular frequency to obtain a second IQ signal and derotate the first IQ signal by a second angular frequency to obtain a third IQ signal, a DC estimator to obtain a fourth IQ signal corresponding to a DC component of the second IQ signal and a fifth IQ signal corresponding to a DC component of the third IQ signal and a controller can determine a gain error or a phase error from the fourth IQ signal and the fifth IQ signal.
Abstract:
The application discloses embodiments of methods and/or systems for compensating a transmission carrier leakage of an up-conversion mixer, a tranceiving circuit or apparatus embodying the same. One embodiment of a method can include detecting an I channel DC offset DCI0 and a Q channel DC offset DCQ0 generated by a reception carrier leakage from an output of a down-conversion mixer, detecting an I channel DC offset DCI and a Q channel DC offset DCQ from the output of the down-conversion mixer while varying a compensation parameter being inputted to an up-conversion mixer that has its output coupled to an input of the down-conversion mixer to determine the compensation parameter that can reduce or minimize a transmission carrier leakage. A combination of a transmission baseband signal and the determined compensation parameter can be transmitted using the up-conversion mixer and an antenna to compensate for the transmission carrier leakage.
Abstract:
The present invention relates to an apparatus and a method for measuring an IQ imbalance. One embodiment according to the present general inventive concept can provide a method for measuring a Tx IQ imbalance generated in an IQ up-conversion mixer and an Rx IQ imbalance generated in an IQ down-conversion mixer, that includes measuring a first IQ imbalance corresponding to a first combination of the Rx IQ imbalance with the Tx IQ imbalance, measuring a second IQ imbalance corresponding to a second combination of the Rx IQ imbalance with the Tx IQ imbalance and obtaining the Tx IQ imbalance and the Rx IQ imbalance from the first IQ imbalance and the second IQ imbalance.
Abstract:
The present general inventive concept relates to apparatuses and/or methods for measuring an IQ imbalance. In one embodiment, a detector can measure an error caused by an IQ imbalance using a first IQ signal including a desired signal and a corresponding image signal by the IQ imbalance. The detector can include a derotator to derotate the first IQ signal by a first angular frequency to obtain a second IQ signal and derotate the first IQ signal by a second angular frequency to obtain a third IQ signal, a DC estimator to obtain a fourth IQ signal corresponding to a DC component of the second IQ signal and a fifth IQ signal corresponding to a DC component of the third IQ signal and a controller can determine a gain error or a phase error from the fourth IQ signal and the fifth IQ signal.