Abstract:
The present invention relates to inducing layer materials for the preparation of weak epitaxial films of non-planar metal phthalocyanine. The characteristics of the inducing layer materials lies in that the said inducing layer materials replace benzene rings of sexiphenyl by conjugated aromatic group and to replace the hydrogen atoms of benzene rings at the two ends of sexiphenyl by fluorine atoms, thus the regulation of molecular interaction is finally realized by changing the size or the linearity degree of the conjugated aromatic groups, as well as by changing the polarity of the benzene ring at the two ends, consequently, the cell parameters of (001) crystal face of the new materials are different from that of sexiphenyl and to achieve a effect of inducing the weak epitaxy growth of non-planar metal-phthalocyanine.
Abstract:
An organic semiconductor crystalline film and weak oriented epitaxy growth preparation method thereof. The organic semiconductor crystalline film is a n-type semiconductor or a p-type semiconductor, and organic semiconductor crystal molecules in the organic semiconductor crystalline film are oriented in a stand-up manner on the ordered substrate, and have an oriented relationship with the ordered substrate. The organic semiconductor crystalline film prepared by the present invention is useful for organic transistor and organic phototransistor devices. The method of the present invention can control the high carrier mobility direction of organic semiconductor crystals to have ordered orientation in the film, enhance contacts between crystals, improve mechanical strength and micro-machining property of the film, and give a high carrier mobility. The carrier mobility of weak oriented epitaxially grown film of the present invention is 0.32 cm2/Vs, which is 5 times as large as that of a vapor phase deposited film, and is similar to that of single crystal. The present invention is adapted to glass substrates and plastic substrates.
Abstract:
A field effect transistor in sandwiched configuration having organic semiconductor, comprising: a substrate (1), a gate electrode (2) formed on the surface of the substrate (1), a gate insulation layer (3) formed on the substrate (1) and the gate insulation layer (2), which is characterized in that, further comprising: an active layer (4) formed on the gate insulation layer (3) but leaving a part of the gate insulation layer (3) to be exposed, a source and drain electrodes (5) formed on a part of the gate insulation layer (3) and a part of the active layer (4), and an active layer (6) formed on the exposed part of the gate insulation layer (3), the active layer (4), the source electrode and the drain electrode (5). Taking full advantage of that the organic semiconductor can be processed under low temperature, the present invention adopts two or more kinds of materials to form the active semiconductor layer to make the active layer good contact with the source/drain electrode more effectively and reduce the threshold voltage of the device, and contact the semiconductor with the source/drain electrode and the insulation layer closely and tightly.
Abstract:
The present invention relates to an organic thin film transistor (OTFT) comprising: a substrate (1), a gate electrode (2) formed on the substrate (1), a gate insulation layer formed on the gate electrode, a source electrode (5) and a drain electrode (6) formed on the gate insulation layer including a first insulation layer (3) and a second insulation layer (4) with different dielectric constants, and an active layer (7) which overlays the source electrode (5) and the drain electrode (6). Without adding the conventional complicated processes like photolithography but adding two simple processes of spin coating or vaporously coating the second insulation film and self-aligned dry RIE, the present invention not only can improve the carrier's injection property so as to improve the OTFT device's properties, but also can block the leakage current of the gate insulation layer and reduce the device's parasitic capacitance. Therefore, the material with high dielectric constant can be used as the insulation layer to increase the channel capacitance so as to reduce threshold voltage of the device and reduce the adverse effect of the leakage between the source and gate electrodes, the gate and drain electrodes.
Abstract:
The present invention relates to solid solution inducing layer for the preparation of weak epitaxial films of non-planar phthalocyanine and the thin film of non-planar phthalocyanine generated from the weak epitaxial growth on the solid solution inducing layer and organic thin film transistor based on the weak rpitaxy growth thin film of non-planar phthalocyanine. The solid solution inducing layer is prepared at certain substrate temperature by vapor co-deposition of any two inducing layer molecules presented by Formula I and Formula II. The solid solution inducing layer has uniformed structure, of which the lattice parameter and electronic structure can be controlled by adjusting the component proportion, the solid solution inducing layer can epitaxially grow a high quality thin film of non-planar phthalocyanine and fabricate high performance transistor device based on such epitaxial thin film.
Abstract:
An organic semiconductor crystalline film and weak oriented epitaxy growth preparation method thereof. The organic semiconductor crystalline film is a n-type semiconductor or a p-type semiconductor, and organic semiconductor crystal molecules in the organic semiconductor crystalline film are oriented in a stand-up manner on the ordered substrate, and have an oriented relationship with the ordered substrate. The organic semiconductor crystalline film prepared by the present invention is useful for organic transistor and organic phototransistor devices. The method of the present invention can control the high carrier mobility direction of organic semiconductor crystals to have ordered orientation in the film, enhance contacts between crystals, improve mechanical strength and micro-machining property of the film, and give a high carrier mobility. The carrier mobility of weak oriented epitaxially grown film of the present invention is 0.32 cm2/Vs, which is 5 times as large as that of a vapor phase deposited film, and is similar to that of single crystal. The present invention is adapted to glass substrates and plastic substrates.
Abstract:
The present invention relates to solid solution inducing layer for the preparation of weak epitaxial films of non-planar phthalocyanine and the thin film of non-planar phthalocyanine generated from the weak epitaxial growth on the solid solution inducing layer and organic thin film transistor based on the weak rpitaxy growth thin film of non-planar phthalocyanine. The solid solution inducing layer is prepared at certain substrate temperature by vapor co-deposition of any two inducing layer molecules presented by Formula I and Formula II. The solid solution inducing layer has uniformed structure, of which the lattice parameter and electronic structure can be controlled by adjusting the component proportion, the solid solution inducing layer can epitaxially grow a high quality thin film of non-planar phthalocyanine and fabricate high performance transistor device based on such epitaxial thin film.
Abstract:
This invention relates to the use of axial substituted phthalocyanine compound as a semiconductor layer between the source/drain electrodes of organic thin-film transistor. The centre ligand of the axial substituted phthalocyanine compound is an atom with 3 valences or higher, and the axial ligands are chlorine, fluorine, or oxygen which can be connected with the centre ligands of axial substituted phthalocyanine compounds. Crystalline Film with high quality can be prepared on an organic substrate from the axial substituted phthalocyanine compound using vapor deposition process. These crystalline films have high carrier mobility, rich energy level, and stable performances and are easy for integrated process. The field effect mobility and the on/off Ratio of the organic thin-film transistor are 0.01 cm2/Vs or more and higher than 105, respectively.
Abstract:
This invention relates to the use of axial substituted phthalocyanine compound as a semiconductor layer between the source/drain electrodes of organic thin-film transistor. The centre ligand of the axial substituted phthalocyanine compound is an atom with 3 valences or higher, and the axial ligands are chlorine, fluorine, or oxygen which can be connected with the centre ligands of axial substituted phthalocyanine compounds. Crystalline Film with high quality can be prepared on an organic substrate from the axial substituted phthalocyanine compound using vapor deposition process. These crystalline films have high carrier mobility, rich energy level, and stable performances and are easy for integrated process. The field effect mobility and the on/off Ratio of the organic thin-film transistor are 0.01 cm2/Vs or more and higher than 105, respectively.
Abstract:
This invention relates to electric contact materials comprising organic heterojunction for improving the contact of organic semiconductor and metal electrode. The electric contact materials comprising organic heterojunction are composed of electron-type organic semiconductors, hole-type organic semiconductors and heterojunctions made thereof. The invention further relates to the organic diode, organic FET and organic photovoltaic device using the electric contact materials comprising organic heterojunction as a buffer layer.