Abstract:
The invention relates to an electric wheel hub drive for a vehicle, in particular a bicycle. The wheel hub drive comprises a hub housing that is pivot-mounted about an axis and a brushless electric motor coaxially arranged with regard to the axis and including a rotor and a stator for driving the hub housing. The rotor of the electric motor includes at least one permanent magnet. According to the invention, the stator includes an ironless stator winding.
Abstract:
A small electric motor is disclosed, such as a claw pole motor. An exemplary small electric motor includes a housing, a stator having at least two stator windings, a rotor having a rotational axis, and a flexible conductor foil for the electrical connection of the stator windings. The conductor foil includes winding connection contacts, external connection contacts and conductor paths between the winding connection contacts and the external connection contacts. Taps of the stator windings are electrically contacted with the winding connection contacts of the conductor foil. The conductor foil can be configured as an elongated strip having at least two connection portions which are arranged in spaced-apart relationship with each other and include winding connection contacts.
Abstract:
The invention relates to an electric wheel hub drive for a vehicle, in particular a bicycle. The wheel hub drive comprises a hub housing that is pivot-mounted about an axis and a brushless electric motor coaxially arranged with regard to the axis and including a rotor and a stator for driving the hub housing. The rotor of the electric motor includes at least one permanent magnet. According to the invention, the stator includes an ironless stator winding.
Abstract:
A response system and method of retrieving user responses from a plurality of users includes providing a plurality of base units and a plurality of response units, each of the response units adapted to receive a user input selection and to communicate that user input selection with at least one base unit utilizing wireless communication. Personality data is provided for the response units. The personality data facilitates communication with a particular base unit. The personality data of a particular one of the response units is changed in order to change which of the base units that response unit communicates. This allows a response unit to become grouped with a particular base unit at a particular time and become grouped with another base unit at another particular time. The personality data may be obtained from a database.
Abstract:
A small electric motor is disclosed, such as a claw pole motor. An exemplary small electric motor includes a housing, a stator having at least two stator windings, a rotor having a rotational axis, and a flexible conductor foil for the electrical connection of the stator windings. The conductor foil includes winding connection contacts, external connection contacts and conductor paths between the winding connection contacts and the external connection contacts. Taps of the stator windings are electrically contacted with the winding connection contacts of the conductor foil. The conductor foil can be configured as an elongated strip having at least two connection portions which are arranged in spaced-apart relationship with each other and include winding connection contacts.
Abstract:
In a preferred embodiment, voltage control system and method which include providing voltage sensing and control circuitry which measures the output voltage of a battery and provides an output signal to a flow control valve to cause the flow control valve to reduce the rate of flow of electrolyte when the output voltage of the battery is below a desired level and to cause the flow control valve to increase the rate of flow of electrolyte when the output voltage of the battery is above a desired level. The flow control valve may be a binary controlled solenoid valve responsive to a pulse-width-modulated signal from the sensing and control circuitry.
Abstract:
The present invention relates to an electric linear drive, particularly for a rotary-lifting motor. Such a linear drive includes a winding system including a plurality of wound coils which are arranged to be coaxial to each other and successive in axial direction, and a magnet system which is movable in axial direction relative to the winding system and includes a plurality of axially successive permanent magnets. The winding system is normally fed by a controlled converter. The coils of the winding system and the permanent magnets of the magnet system define an air gap thereinbetween. Furthermore, a sensor is provided for detecting the relative movement of winding system and magnet system and for detecting the relative position of the two systems, the sensor being used for scanning a timing ruler mounted on the outer circumference of the magnet system. The magnet system is radially arranged in the interior of the winding system, and the timing ruler circumferentially extends only over a portion of the circumference of the magnet system. According to the invention it is either provided that the coils of the winding system have a radial bulge for the timing ruler, or that the magnet system is eccentrically arranged relative to the winding system, or that the magnet system includes a radial bulge in the form of a flat portion for the timing ruler.
Abstract:
In a small electric motor having a stator and a rotor which includes a solid-cylindrical permanent magnet and at least one shaft element mounted on a face of the permanent magnet and bonded thereto by adhesive, the shaft element has at least one recess on its face facing the permanent magnet. The adhesive is introduced into the recess and contacting the face of the permanent magnet in the area of the recess.
Abstract:
In a small electric motor having a stator and a rotor which includes a solid-cylindrical permanent magnet and at least one shaft element mounted on a face of the permanent magnet and bonded thereto by adhesive, the shaft element has at least one recess on its face facing the permanent magnet. The adhesive is introduced into the recess and contacting the face of the permanent magnet in the area of the recess.