Abstract:
Methods, systems and devices are described for detecting a measurable capacitance using charge transfer techniques that can be implemented with many standard microcontrollers, and can share components to reduce device complexity and improve performance. In the various implementations of this embodiment, the passive network used to accumulate charge can be shared between multiple measurable capacitances. Likewise, in various implementations a voltage conditioning circuit configured to provide a variable reference voltage can be shared between multiple measurable capacitances. Finally, in various implementations a guarding electrode configured to guard the measurable capacitances can be shared between multiple measurable capacitances. In each of these cases, sharing components can reduce device complexity and improve performance.
Abstract:
An X-Y digitizer system is described for embedding within a host device, such as a tablet PC, a mobile telephone, a personal digital assistant or the like. The digitizer is configurable so that it can detect and track the position of different types of position indicator. The digitizer that is described also includes novel digitizer windings and novel excitation circuitry for energizing the windings.
Abstract:
Methods, systems and devices are described for detecting a measurable capacitance using sigma-delta measurement techniques. According to various embodiments, a voltage is applied to the measurable capacitance using a first switch. The measurable capacitance is allowed to share charge with a passive network. If the charge on the passive network is past a threshold value, then the charge on the passive network is changed by a known amount for a sufficient number of repetitions until the measurable capacitance can be detected. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to a button, slider, touchpad or other input sensor.
Abstract:
A combination bread toaster and steamer device includes a pair of vertically oriented bread slots extending into a housing from a top of the housing; means for elevating and lowering bread in the bread slots; a steamer compartment, disposed on the housing, including a heater pan configured to receive water; and at least one heating element associated with the bread slots and the steamer compartment.
Abstract:
A combination bread toaster and steamer device includes a pair of vertically oriented bread slots extending into a housing from a top of the housing; means for elevating and lowering bread in the bread slots; a steamer compartment, disposed on the housing, including a heater pan configured to receive water; and at least one heating element associated with the bread slots and the steamer compartment.
Abstract:
A security thread for use in a paper-based value document, such as currency or banknote paper, includes a plastic substrate coated with one or more regions of "soft" magnetic material. A device for verifying both the authenticity and the denomination of the document includes a coil that is driven by an alternating current to thereby provide a uniform magnetic field within a predetermined spatial region. As the document passes in proximity to the drive coil, the applied magnetic field saturates the regions of magnetic material on the security thread. The magnetic regions provide a response magnetic field that, because of the saturation of the magnetic regions, is a non-linear response containing a multiple of frequency components, including a component at the fundamental or drive frequency and various harmonic frequency components. A receive coil senses the response magnetic field. A signal processor connected to the receive coil utilizes the response signals at the fundamental frequency and the low-order harmonic frequencies to determine both the type of magnetic material on the security thread and the denomination of the document from the spatial distribution of the magnetic regions on the security thread.
Abstract:
Methods, systems and devices are described for detecting a measurable capacitance using charge transfer techniques. According to various embodiments, a charge transfer process is performed for two or more times. During the charge transfer process, a pre-determined voltage is applied to the measurable capacitance, and the measurable capacitance is then allowed to share charge with a filter capacitance through a passive impedance that remains coupled to both the measurable capacitance and to the filter capacitance throughout the charge transfer process. The value of the measurable capacitance can then be determined as a function of a representation of a charge on the filter capacitance and the number of times that the charge transfer process was performed. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to an input sensor.
Abstract:
Methods, systems and devices are described for detecting a measurable capacitance using sigma-delta measurement techniques. According to various embodiments, a voltage is applied to the measurable capacitance using a first switch. The measurable capacitance is allowed to share charge with a passive network. If the charge on the passive network is past a threshold value, then the charge on the passive network is changed by a known amount for a sufficient number of repetitions until the measurable capacitance can be detected. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to a button, slider, touchpad or other input sensor.
Abstract:
Methods, systems and devices are described for detecting a measurable capacitance using charge transfer techniques. According to various embodiments, a charge transfer process is performed for two or more times. During the charge transfer process, a pre-determined voltage is applied to the measurable capacitance, and the measurable capacitance is then allowed to share charge with a filter capacitance through a passive impedance that remains coupled to both the measurable capacitance and to the filter capacitance throughout the charge transfer process. The value of the measurable capacitance can then be determined as a function of a representation of a charge on the filter capacitance and the number of times that the charge transfer process was performed. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to an input sensor.