Abstract:
An electrochemical cell includes an outer housing, a separator for separating an anode material from a cathode material, wherein the separator is disposed in the outer housing. The electrochemical cell also includes a conductive thin sheet disposed around an outer circumference of the separator, wherein the conductive thin sheet is disposed such that it allows passage of the anode material between the separator and the conductive thin sheet. The electrochemical cell further includes a conductive matrix disposed between, and in contact with, the conductive thin sheet and the outer housing.
Abstract:
An energy storage device comprising an anode, electrolyte, and cathode is provided. The cathode comprises a plurality of granules comprising a support material, an active electrode metal, and a salt material, such that the cathode has a granule packing density equal to or greater than about 2 g/cc. A cathode comprising greater than about 10 volume % total metallic content in a charged state of the cathode is also provided.
Abstract:
A positive electrode composition is provided. The positive electrode composition includes at least one electroactive metal, such as titanium, vanadium, niobium, molybdenum, nickel, cobalt, chromium, manganese, silver, antimony, cadmium, tin, lead, and zinc. The electroactive metal is present in an amount in a range from about 10 volume percent to about 20 volume percent, based on the volume of the positive electrode composition. The composition further includes iron, present in an amount in a range from about 0.2 volume percent to about 3 volume percent, based on the volume of the positive electrode composition; at least one first alkali metal halide; and an electrolyte salt. The electrolyte salt can be based on a reaction product of a second alkali metal halide and an aluminum halide, and has a melting point of less than about 300 degrees Celsius. An article, an energy storage device, and an uninterruptable power supply device that includes the positive electrode composition are also described; as is a method of forming the energy storage device.
Abstract:
An article is provided. The article may include an electrochemical cell. The cell may include a molten electrolyte, and at least one molten electrode. The cell may include a structure for separating an anode from a cathode, while enabling ionic communication between the anode and cathode. An energy storage device comprising the article is also provided. Methods related to the article and the energy storage device may be provided.
Abstract:
An article of electrochemical energy conversion is provided that includes a separator. The separator has a first surface that defines at least a portion of a first chamber, and a second surface that defines a second chamber, and the first chamber is in ionic communication with the second chamber through the separator. The energy storage device further includes a plurality of cathodic materials. The plurality includes at least a first cathodic material and a second cathodic material. Both of the cathodic materials are in electrical communication with the separator and both are capable of forming a metal halide. A proviso is that if either of the first cathodic material or the second cathodic material is a transition metal, then the other cathodic material is not iron, arsenic, or antimony.
Abstract:
A method of pulse charging a secondary electrochemical storage cell is provided. The secondary cell includes a negative electrode comprising an alkaline metal; a positive electrode comprising at least one transition metal halide; a molten salt electrolyte comprising alkaline metal haloaluminate; and a solid electrolyte partitioning the positive electrode from the negative electrode, such that a first surface of the solid electrolyte is in contact with the positive electrode, and a second surface of the solid electrolyte is in contact with the negative electrode. The method of charging includes polarizing the cell by applying a polarizing voltage greater than about 0.1 V above the cell's rest potential for a first predetermined period of time; depolarizing the cell for a second predetermined period of time; and repeating the polarizing and depolarizing steps until a charging end-point is reached.
Abstract:
An electrochemical cell is provided. The electrochemical cell comprises a cathode compartment, wherein a metal in a solid form is disposed in the cathode compartment. The electrochemical cell further comprises a separator, an anode compartment, and at least one contact device disposed in the cathode compartment or in the anode compartment. The contact device is suspended from the top of the electrochemical cell in the cathode compartment or in the anode compartment. The electrochemical cell is in a ground state. An electrochemical cell during its working is also provided. Methods for using and manufacturing the electrochemical cell are also provided. The electrochemical cell is used to determine a state-of-charge of a source.
Abstract:
A positive electrode composition is presented. The composition includes at least one electroactive metal; at least one alkali metal halide; and at least one additive including a plurality of nanoparticles, wherein the plurality of nanoparticles includes tungsten carbide. An energy storage device, and a related method for the preparation of an energy storage device, are also presented.
Abstract:
A positive electrode composition is provided. The positive electrode composition includes at least one electroactive metal selected from the group consisting of titanium, vanadium, niobium, molybdenum, nickel, cobalt, chromium, manganese, silver, antimony, cadmium, tin, lead, iron, and zinc. The composition further includes sodium iodide, present in an amount in a range from about 0.1 weight percent to about 0.9 weight percent, based on the weight of the positive electrode composition; a first alkali metal halide; and an electrolyte salt comprising a reaction product of a second alkali metal halide and an aluminum halide, wherein the electrolyte salt has a melting point of less than about 300 degrees Celsius. Related devices, such as a UPS device, also form embodiments of this invention.
Abstract:
A composition is provided that includes a ternary electrolyte having a melting point greater than about 150 degree Celsius. The ternary electrolyte includes an alkali metal halide, an aluminum halide and a zinc halide. The amount of the zinc halide present in the ternary electrolyte is greater than about 20 mole percent relative to an amount of the aluminum halide. An energy storage device including the composition is provided. A system and a method are also provided.