摘要:
A positive electrode composite material for a lithium ion secondary battery that makes it possible to appropriately reduce the electric resistance in a positive electrode and to realize a high-performance lithium ion secondary battery. The positive electrode composite material to be used in the positive electrode of the lithium ion secondary battery includes a particulate positive electrode active material composed of a lithium composite oxide having a layered crystal structure including at least lithium, and a conductive oxide. Here, a particulate region where primary particles of the conductive oxide are aggregated, and a film-shaped region where the conductive oxide is formed in a film shape adhere to at least a part of the surface of the positive electrode active material. The average particle diameter based on cross-sectional TEM observation of primary particles in the particulate region is equal to or greater than 0.3 nm, and in cross-sectional TEM observation of the film-shaped region, no particles with a particle diameter equal to or greater than 0.3 nm are observed, and there are no voids equal to or greater than 2 nm.
摘要:
In one embodiment, an electrical power storage system using hydrogen includes a power generation unit generating power using hydrogen and oxidant gas and an electrolysis unit electrolyzing steam. The electrical power storage system includes a hydrogen storage unit storing hydrogen generated by the electrolysis and supplying the hydrogen to the power generation unit during power generation, a high-temperature heat storage unit storing high temperature heat generated accompanying the power generation and supplying the heat to the electrolysis unit during the electrolysis, and a low-temperature heat storage unit storing low-temperature heat, which is exchanged in the high-temperature heat storage unit and generating with this heat the steam supplied to the electrolysis unit.
摘要:
In one embodiment, an electrical power storage system using hydrogen includes a power generation unit generating power using hydrogen and oxidant gas and an electrolysis unit electrolyzing steam. The electrical power storage system includes a hydrogen storage unit storing hydrogen generated by the electrolysis and supplying the hydrogen to the power generation unit during power generation, a high-temperature heat storage unit storing high temperature heat generated accompanying the power generation and supplying the heat to the electrolysis unit during the electrolysis, and a low-temperature heat storage unit storing low-temperature heat, which is exchanged in the high-temperature heat storage unit and generating with this heat the steam supplied to the electrolysis unit.
摘要:
In one embodiment, an electrical power storage system using hydrogen includes a power generation unit generating power using hydrogen and oxidant gas and an electrolysis unit electrolyzing steam. The electrical power storage system includes a hydrogen storage unit storing hydrogen generated by the electrolysis and supplying the hydrogen to the power generation unit during power generation, a high-temperature heat storage unit storing high temperature heat generated accompanying the power generation and supplying the heat to the electrolysis unit during the electrolysis, and a low-temperature heat storage unit storing low-temperature heat, which is exchanged in the high-temperature heat storage unit and generating with this heat the steam supplied to the electrolysis unit.
摘要:
A positive electrode composite material for a lithium ion secondary battery that makes it possible to appropriately reduce the electric resistance in a positive electrode and to realize a high-performance lithium ion secondary battery. The positive electrode composite material to be used in the positive electrode of the lithium ion secondary battery includes a particulate positive electrode active material composed of a lithium composite oxide having a layered crystal structure including at least lithium, and a conductive oxide. Here, a particulate region where primary particles of the conductive oxide are aggregated, and a film-shaped region where the conductive oxide is formed in a film shape adhere to at least a part of the surface of the positive electrode active material. The average particle diameter based on cross-sectional TEM observation of primary particles in the particulate region is equal to or greater than 0.3 nm, and in cross-sectional TEM observation of the film-shaped region, no particles with a particle diameter equal to or greater than 0.3 nm are observed, and there are no voids equal to or greater than 2 nm.
摘要:
In one embodiment, an electrical power storage system using hydrogen includes a power generation unit generating power using hydrogen and oxidant gas and an electrolysis unit electrolyzing steam. The electrical power storage system includes a hydrogen storage unit storing hydrogen generated by the electrolysis and supplying the hydrogen to the power generation unit during power generation, a high-temperature heat storage unit storing high temperature heat generated accompanying the power generation and supplying the heat to the electrolysis unit during the electrolysis, and a low-temperature heat storage unit storing low-temperature heat, which is exchanged in the high-temperature heat storage unit and generating with this heat the steam supplied to the electrolysis unit.