摘要:
Phase-based TOF systems operate with reduced depth error due to motion blur, and/or spatial blur, and/or pixel offset by intelligently determining how best to combine pixel values, and how best to compensate for individual pixel offsets. Such determination(s) may be carried out on a per pixel basis, dynamically, in real-time during TOF operation, or on archived TOF data. Offsets for individual pixels may be dynamically calculated and subtracted from the values acquired by those pixels Individual pixel offsets may be calculated for example by combining data acquired by the same pixel at two acquisitions, 180° out of phase with respect to each other. Calculated offsets may be averaged, or on a per pixel basis, and if target object motion is detected, one or more offset calculations can be discarded rather than averaged to reduce motion blur. Offsets acquired a priori during a TOF system calibration procedure may be used.
摘要:
A CMOS detector with pairs of interdigitated elongated finger-like collection gates includes p+ implanted regions that create charge barrier regions that can intentionally be overcome. These regions steer charge to a desired collection gate pair for collection. The p+ implanted regions may be formed before and/or after formation of the collection gates. These regions form charge barrier regions when an associated collection gate is biased low. The barriers are overcome when an associated collection gate is high. These barrier regions steer substantially all charge to collection gates that are biased high, enhancing modulation contrast. Advantageously, the resultant structure has reduced power requirements in that inter-gate capacitance is reduced in that inter-gate spacing can be increased over prior art gate spacing and lower swing voltages may be used. Also higher modulation contrast is achieved in that the charge collection area of the low gate(s) is significantly reduced.
摘要翻译:具有交叉指状细长的指状集合门对的CMOS检测器包括产生可有意克服的电荷阻挡区域的p +注入区域。 这些区域将电荷引导到期望的收集门对以进行收集。 p +注入区域可以在形成收集栅极之前和/或之后形成。 当相关采集门被偏置为低电平时,这些区域形成电荷势垒区域。 当相关联的收集门高时,障碍被克服。 这些屏障区域将基本上将所有电荷转向偏向高的收集门,增强调制对比度。 有利地,所得到的结构具有降低的功率需求,因为栅极间电容被减小,因为可以使用栅极间间隔超过现有技术的栅极间隔,并且可以使用较低的摆动电压。 实现了较低的调制对比度,因为低栅极的电荷收集区域被显着地减少。
摘要:
Rapid calibration of a TOF system uses a stationary target object and electrically introduces phase shift into the TOF system to emulate target object relocation. Relatively few parameters suffice to model a parameterized mathematical representation of the transfer function between measured phase and Z distance. The phase-vs-distance model is directly evaluated during actual run-time operation of the TOF system. Preferably modeling includes two components: electrical modeling of phase-vs-distance characteristics that depend upon electrical rather than geometric characteristics of the sensing system, and elliptical modeling that phase-vs-distance characteristics that depending upon geometric rather than electrical characteristics of the sensing system.
摘要:
CMOS implementable three-dimensional silicon sensors are fabricated using a standard fab but using augmented rules that create mask patterns not expressible with existing fab rules. Standard fab rules are not optimized to produce high quality three-dimensional silicon sensors. Accordingly, the normal set of rules does not permit creating the fab mask patterns necessary for high performance such sensors. However, the present invention can use the fab standard mask set with a rich set of fab instructions to express mask patterns from the mask set that would not otherwise be expressible. The resultant method enables high quality silicon sensors for three-dimensional sensing to be readily mass produced from a standard fab.
摘要:
A method and system dynamically calculates confidence levels associated with accuracy of Z depth information obtained by a phase-shift time-of-flight (TOF) system that acquires consecutive images during an image frame. Knowledge of photodetector response to maximum and minimum detectable signals in active brightness and total brightness conditions is known a priori and stored. During system operation brightness threshold filtering and comparing with the a priori data permits identifying those photodetectors whose current output signals are of questionable confidence. A confidence map is dynamically generated and used to advise a user of the system that low confidence data is currently being generated. Parameter(s) other than brightness may also or instead be used.
摘要:
TOF and color sensing detector structures have x-axis spaced-apart y-axis extending finger-shaped gate structures with adjacent source collection regions. X-dimension structures are smaller than y-dimension structure and govern performance, characterized by high x-axis electric fields and rapid charge movement, contrasted with lower y-axis electric fields and slower charge movement. Preferably a potential barrier is implanted between adjacent gates and a bias gate is formed intermediate a gate and associated source region. Resultant detector structures can be operated at the more extreme gate voltages that are desirable for high performance.
摘要:
Effective differential dynamic range and common mode rejection in a differential pixel detector are enhanced by capturing and isolating differential detector charge output before using common mode reset to avoid detector saturation due to common mode components of optical energy to be detected. Differential charge is stored into an integration capacitor associated with an operational amplifier coupled to receive as input the differential detector outputs. Common mode reset is achieved by setting storage capacitors coupled to the outputs of the differential detector at least once within an integration time T before storage potential exceeds a saturation voltage Vsat for the photodetector.
摘要:
Dynamic range of a differential pixel is enhanced by injecting, synchronously or asynchronously, a compensating offset (ΔCOMP) into a differential signal capacitor whenever magnitude of the differential signal across the capacitor exceeds a predetermined value. Positive and negative magnitudes of ΔCOMP need not be equal. The number (N) of ΔCOMP offsets made is counted. Effective differential signal capacitor voltage V(t)=Vo±N·ΔCOMP, where Vo is capacitor voltage. In other embodiments magnitude of ΔCOMP in a sequence of compensations can differ, and the sum total of compensations in recorded. Differential pixel signal/noise ratio is increased by dynamically maximizing operational amplifier gain AG for each differential pixel.
摘要:
TOF and color sensing detector structures have x-axis spaced-apart y-axis extending finger-shaped gate structures with adjacent source collection regions. X-dimension structures are smaller than y-dimension structure and govern performance, characterized by high x-axis electric fields and rapid charge movement, contrasted with lower y-axis electric fields and slower charge movement. Preferably a potential barrier is implanted between adjacent gates and a bias gate is formed intermediate a gate and associated source region. Resultant detector structures can be operated at the more extreme gate voltages that are desirable for high performance.
摘要:
Structures and methods for three-dimensional image sensing using high frequency modulation includes CMOS-implementable sensor structures using differential charge transfer, including such sensors enabling rapid horizontal and slower vertical dimension local charge collection. Wavelength response of such sensors can be altered dynamically by varying gate potentials. Methods for producing such sensor structures on conventional CMOS fabrication facilities include use of “rich” instructions to command the fabrication process to optimize image sensor rather than digital or analog ICs. One detector structure has closely spaced-apart, elongated finger-like structures that rapidly collect charge in the spaced-apart direction and then move collected charge less rapidly in the elongated direction. Detector response is substantially independent of the collection rate in the elongated direction.