Abstract:
Distributed network-based data backup, recovery and deletion methods and a distributed network system thereof are provided. The methods include respectively establishing peer-to-peer connections between a host storage server and a plurality of peer storage servers, dividing original data into a plurality of data segments, generating a plurality of data segment copies corresponding to the data segments according to a minimum survival rate and the number of peer storage servers. The methods also include transmitting the data segment copies to the peer storage servers, wherein the number of data segment copies for each of the data segments is equal to a redundancy, and the redundancy is smaller than the number of the peer storage servers, and the data segment copies distributed to any one of the peer storage servers correspond to a portion of all the data segments. Accordingly, the methods can effectively and safely backup the original data.
Abstract:
An exemplary transflective liquid crystal display panel (2) includes a first substrate (21) with a glass base (210), a second substrate (22) opposite to the first substrate, a liquid crystal layer (23) between the first and second substrates, and an insulating layer (211), a first passivation layer (212), a first electrode layer (213), and a second passivation layer (216) successively disposed at an inner side of the glass base. The first electrode layer has an uneven surface (2131), the second passivation layer is provided only at reflective areas of the transflective liquid crystal display panel, the second passivation layer has a reflection characteristic, and the second passivation layer has a plurality of bumps (2161) at an inmost side thereof.
Abstract:
A real-time image monitoring and recording system includes a plurality of IP cameras and a plurality of surveillance servers. The IP cameras and the surveillance servers can process anycast packets. The surveillance servers control the IP cameras and store data generated by the IP cameras. Peer-to-peer connection exists between the surveillance server and its neighboring surveillance servers. Any surveillance server stores configuration data of its neighboring surveillance servers rather than the configuration data of all the surveillance servers.
Abstract:
A multimedia file sharing method and a system thereof are provided herein, which applies the virtual file technology to achieve near real time multimedia sharing and transparent receiving functions. In the method, an interface software system is established through a network to speed up playing of multimedia files by different multimedia players. The interface software provides a speeding up and near real time multimedia playing effect for sharing multimedia through the network, by which for different transmissions of multimedia files or for playing multimedia files with different formats, the multimedia player is not necessary to modify or add the software of the players to meet the streaming protocols or container. In addition, the interface software is capable of providing the effect of playing the multimedia files by the players with satisfied quality and near real time performance.
Abstract:
A system and a method for controlling a power line network are provided. In the system and the method, a control unit device in every control network generates its own control network identification (CNID) and sends query messages to the other control networks to ensure each CNID is unique in the signal-reachable networks. The system and the method differentiate messages of the local control network from messages of the other control networks based on received signal strength of the messages in order to correctly demarcate multiple control networks.
Abstract:
Distributed network-based data backup, recovery and deletion methods and a distributed network system thereof are provided. The methods include respectively establishing peer-to-peer connections between a host storage server and a plurality of peer storage servers, dividing original data into a plurality of data segments, generating a plurality of data segment copies corresponding to the data segments according to a minimum survival rate and the number of peer storage servers. The methods also include transmitting the data segment copies to the peer storage servers, wherein the number of data segment copies for each of the data segments is equal to a redundancy, and the redundancy is smaller than the number of the peer storage servers, and the data segment copies distributed to any one of the peer storage servers correspond to a portion of all the data segments. Accordingly, the methods can effectively and safely backup the original data.
Abstract:
An exemplary fringe field switching liquid crystal display device (3) includes a first substrate (310) and a second substrate (320) disposed parallel to each other and spaced apart a predetermined distance. A liquid crystal layer (300) is interposed between the first and second substrates. A plurality of gate lines (332) and data lines (331) are formed on the second substrate, thereby defining a plurality of pixel regions. A common electrode (321) is arranged in each pixel region. And a pixel electrode (323) is arranged in each pixel region and insulated from the common electrode, the pixel electrode including a plurality of slits (350) arranged therein. The slits are separate from each other and maintain varied angles including oblique angles relative to the nearest gate lines.
Abstract:
An exemplary fringe field switching liquid crystal display device (3) includes a first substrate (310) and a second substrate (320) disposed parallel to each other and spaced apart a predetermined distance. A liquid crystal layer (300) is interposed between the first and second substrates. A plurality of gate lines (332) and data lines (331) are formed on the second substrate, thereby defining a plurality of pixel regions. A common electrode (321) is arranged in each pixel region. And a pixel electrode (323) is arranged in each pixel region and insulated from the common electrode, the pixel electrode including a plurality of slits (350) arranged therein. The slits are separate from each other and maintain varied angles including oblique angles relative to the nearest gate lines.
Abstract:
An exemplary transflective liquid crystal display panel (2) includes a first substrate (21) with a glass base (210), a second substrate (22) opposite to the first substrate, a liquid crystal layer (23) between the first and second substrates, and an insulating layer (211), a first passivation layer (212), a first electrode layer (213), and a second passivation layer (216) successively disposed at an inner side of the glass base. The first electrode layer has an uneven surface (2131), the second passivation layer is provided only at reflective areas of the transflective liquid crystal display panel, the second passivation layer has a reflection characteristic, and the second passivation layer has a plurality of bumps (2161) at an inmost side thereof.
Abstract:
A system and a method for controlling a power line network are provided. In the system and the method, a control unit device in every control network generates its own control network identification (CNID) and sends query messages to the other control networks to ensure each CNID is unique in the signal-reachable networks. The system and the method differentiate messages of the local control network from messages of the other control networks based on received signal strength of the messages in order to correctly demarcate multiple control networks.