Abstract:
A working machine is provided with a plurality of exchangeable components, and each component is provided with a wireless tag. A component ID is stored in advance in the wireless tag. When, on the side of the working machine, a component exchange timing or an engine starting timing is detected, the component ID stored in the wireless tag is acquired, and is transmitted to a working machine management device. The working machine management device checks the component ID which has been received from the working machine and a component ID which is stored in a component ID storage means against one another. And, if these two component IDs do not match one another, an abnormal state detection means outputs a warning signal.
Abstract:
[Object] Disclosed is a highly sensitive piezoelectric/magnetostrictive composite magnetic sensor which has a simple structure and thus can be downsized easily.[Solving Means] Film(s) of magnetostrictive material, which is composed of an Fe alloy containing Pd, Ga, Co and the like, is(are) formed and integrated on at least one surface of a piezoelectric ceramic substrate by a sputtering method. When the magnetostrictive material is deformed by an external magnetic field, a stress is applied to the piezoelectric material that is integrated with the magnetostrictive material. The voltage generated by the change in the polarization within the piezoelectric material, said change being caused by the stress, is sensed as an output of the magnetic sensor.
Abstract:
A working machine is provided with a plurality of exchangeable components, and each component is provided with a wireless tag. A component ID is stored in advance in the wireless tag. When, on the side of the working machine, a component exchange timing or an engine starting timing is detected, the component ID stored in the wireless tag is acquired, and is transmitted to a working machine management device. The working machine management device checks the component ID which has been received from the working machine and a component ID which is stored in a component ID storage means against one another. And, if these two component IDs do not match one another, an abnormal state detection means outputs a warning signal.
Abstract:
[Object] A bulk material which is suitably used as a material for actuator and sensor elements is formed from a Fe—Ga base magnetoresistive alloy and a Ti—Ni base shape memory alloy taking advantage of crystal miniaturization and anisotropy as well as reduction of precipitates (equilibrium state in state diagram) and non-equilibrium phases peculiar to liquid rapidly solidified materials, and the performance of the material is enhanced by a production method thereof which has cost advantage over a melt method. [Construction] A rapidly solidified material having a particular rapidly solidified texture of a Fe—Ga magnetostrictive alloy or a TiNi-based shape-memory alloy and properties derived therefrom is formed into slices which are laminated to each other in a die, or is formed into a powder or chops which are filled in the die. Subsequently, spark plasma sintering is performed so that bonds between the slices, grains of the powder, or the chops are formed at a high density to form a bulk alloy, followed by annealing whenever necessary, so that the properties of the alloy are improved.
Abstract:
A computer implemented method and machine readable media for managing a registry of bound objects for inter-Xlet communication (IXC) is described. A request from a first Xlet to bind an exported object name with a remote reference is received. A number of objects exported by the first Xlet is compared with a maximum number. If the number of objects exported is less than the maximum number then a binding is added for the exported object name and the remote reference. If the number of objects exported is greater than the maximum number, then the request is denied.
Abstract:
A computer implemented method and machine readable media for managing a registry of bound objects for inter-Xlet communication (IXC) is described. A request from a first Xlet to bind an exported object name with a remote reference is received. A number of objects exported by the first Xlet is compared with a maximum number. If the number of objects exported is less than the maximum number then a binding is added for the exported object name and the remote reference. If the number of objects exported is greater than the maximum number, then the request is denied.
Abstract:
A working machine is provided with a plurality of exchangeable components, and each component is provided with a wireless tag. A component ID is stored in advance in the wireless tag. When, on the side of the working machine, a component exchange timing or an engine starting timing is detected, the component ID stored in the wireless tag is acquired, and is transmitted to a working machine management device. The working machine management device checks the component ID which has been received from the working machine and a component ID which is stored in a component ID storage means against one another. And, if these two component IDs do not match one another, an abnormal state detection means outputs a warning signal.
Abstract:
A rapidly solidified Fe—Ga alloy containing 15 to 23 atomic percent of Ga having a particular rapidly solidified texture is formed into slices which are laminated to each other in a die, or is formed into a powder or chops which are filled in the die. Subsequently, spark plasma sintering is performed so that bonds between the slices, grains of the powder, or the chops are formed at a high density to form a bulk alloy and the rapidly solidified texture is not lost, followed by annealing whenever necessary, so that a magnetostriction of 170 to 230 ppm at room temperature is obtained.
Abstract:
A rapidly solidified Fe—Ga alloy containing 15 to 23 atomic percent of Ga having a particular rapidly solidified texture is formed into slices which are laminated to each other in a die, or is formed into a powder or chops which are filled in the die. Subsequently, spark plasma sintering is performed so that bonds between the slices, grains of the powder, or the chops are formed at a high density to form a bulk alloy and the rapidly solidified texture is not lost, followed by annealing whenever necessary, so that a magnetostriction of 170 to 230 ppm at room temperature is obtained.