摘要:
The present invention relates to an Sm—Fe—N magnet material including: 7.0-12 at % of Sm; 0.1-1.5 at % of at least one element selected from the group consisting of Hf, Zr, and Sc; 0.1-0.5 at % of Mn; 10-20 at % of N; and 0-35 at % of Co, with the remainder being Fe and unavoidable impurities. The present invention also relates to an Sm—Fe—N bonded magnet including a powder of the Sm—Fe—N magnet material and a binder.
摘要:
Provided is a negative electrode active material that can improve the discharge capacity per volume and charge-discharge cycle characteristics. The negative electrode active material according to the present embodiment contains an alloy phase. The alloy phase undergoes thermoelastic diffusionless transformation when releasing metal ions or occluding metal ions. The oxygen content of the negative electrode active material is not more than 5000 ppm in mass.
摘要:
A method for preparing a magnesium-based hydrogen storage material, includes: a Mg—Ce—Ni family amorphous alloy is prepared by a rapid cooling process; the amorphous alloy is pulverized, so as to obtain a amorphous powder; the amorphous alloy is activated, so as to obtain a MgH2—Mg2NiH4—CeH2.73 family nanocrystalline composite; the abovementioned composite is carried out a hydrogen absorption and desorption cycle, then the composite is placed in a pure Ar atmosphere for passivation, finally, the passivated composite is oxidized, so as to obtain a MgH2—Mg2NiH4—CeH2.73—CeO2 family nanocrystalline composite.
摘要:
Provided are a sintered body for forming a rare-earth magnet with a high degree of orientation and high remanent magnetization, and a method for producing magnetic powder for forming the sintered body. A sintered body S that is a precursor of a rare-earth magnet, the sintered body S including crystal grains g2 of an Nd—Fe—B-based main phase with a nanocrystalline structure, and a grain boundary phase around the main phase, and the rare-earth magnet being adapted to be formed by applying hot deformation processing to the sintered body S for imparting anisotropy thereto and further diffusing an alloy for improving coercivity therein. Each crystal grain g2 that forms the sintered body S has a planar shape that is, when viewed from a direction perpendicular to an easy direction of magnetization (i.e., a c-axis direction), a rectangle having sides in the c-axis direction and sides in a direction (i.e., an a-axis direction) that is perpendicular to the c-axis direction, or a shape that is close to the rectangle.
摘要:
Dispersion strengthened aluminum base alloys are shaped into metal parts by high strain rate forging compacts or extruded billets composed thereof. The number of process steps required to produce the forged part are decreased and strength and toughness of the parts are increased. The dispersion strengthened alloy may have the formula Albal,Fea,SibXc, wherein X is at least one element selected from Mn, V, Cr, Mo, W, Nb, and Ta, “a” ranges from 2.0 to 7.5 weight-%, “b” ranges from 0.5 to 3.0 weight-%, “c” ranges from 0.05 to 3.5 weight-%, and the balance is aluminum plus incidental impurities. Alternatively, the dispersion strengthened alloy may be described by the formula Albal,Fea,SibVdXc, wherein X is at least one element selected from Mn, Mo, W, Cr, Ta, Zr, Ce, Er, Sc, Nd, Yb, and Y, “a” ranges from 2.0 to 7.5 weight-%, “b” ranges from 0.5 to 3.0 weight-%, “d” ranges from 0.05 to 3.5 weight-%, “c” ranges from 0.02 to 1.50 weight-%, and the balance is aluminum plus incidental impurities. In both cases, the ratio [Fe+X]:Si in the dispersion strengthened alloys is within the range of from about 2:1 to about 5:1.
摘要:
A method for producing a rare-earth alloy based binderless magnet according to the present invention includes the steps of: (A) providing a rapidly solidified rare-earth alloy magnetic powder; and (B) compressing and compacting the rapidly solidified rare-earth alloy magnetic powder by a cold process without using a resin binder, thereby obtaining a compressed compact, 70 vol % to 95 vol % of which is the rapidly solidified rare-earth alloy magnetic powder.
摘要:
A method of rapidly cooling molten mixtures of alkali metal alloys in which the metal components of said alloys have a wide divergence of melting points that result in separation of the alkali metals during cool down. A calcium-sodium alloy is produced in an electrolysis cell. A method of high pressure atomization of the calcium-sodium alloy and its subsequent rapid cooling produces a calcium nodular particulate that is encased in a sodium flocculant. The material manufactured is used as a nodular electrolytic flocculant reactant in the electrolyte of an alkaline battery.
摘要:
Dispersion strengthened aluminum base alloys are shaped into metal parts by high strain rate forging compacts or extruded billets composed thereof. The number of process steps required to produce the forged part are decreased and strength and toughness of the parts are increased. The dispersion strengthened alloy may have the formula Albal,Fea,SibXc, wherein X is at least one element selected from Mn, V, Cr, Mo, W, Nb, and Ta, “a” ranges from 2.0 to 7.5 weight-%, “b” ranges from 0.5 to 3.0 weight-%, “c” ranges from 0.05 to 3.5 weight-%, and the balance is aluminum plus incidental impurities. Alternatively, the dispersion strengthened alloy may be described by the formula Albal,Fea,SibVdXc, wherein X is at least one element selected from Mn, Mo, W, Cr, Ta, Zr, Ce, Er, Sc, Nd, Yb, and Y, “a” ranges from 2.0 to 7.5 weight-%, “b” ranges from 0.5 to 3.0 weight-%, “d” ranges from 0.05 to 3.5 weight-%, “c” ranges from 0.02 to 1.50 weight-%, and the balance is aluminum plus incidental impurities. In both cases, the ratio [Fe+X]:Si in the dispersion strengthened alloys is within the range of from about 2:1 to about 5:1.
摘要:
An electrode composition for a lithium-ion battery comprising particles having an average particle size ranging from 1 μm to 50 μm. The particles include an electrochemically active phase and an electrochemically inactive phase that share a common phase boundary. The electrochemically active phase includes elemental silicon and the electrochemically inactive phase includes at least two metal elements in the form of an intermetallic compound, a solid solution, or combination thereof. Each of the phases is free of crystallites that are greater than 1000 angstroms prior to cycling. In addition, the electrochemically active phase is amorphous after the electrode has been cycled through one full charge-discharge cycle in a lithium-ion battery.
摘要:
A method of rapidly cooling molten mixtures of alkali metal alloys in which the metal components of said alloys have a wide divergence of melting points that result in separation of the alaki metals during cool down. A calcium-sodium alloy is produced in an electrolysis cell. A method of high pressure atomization of the calcium-sodium alloy and its subsequent rapid cooling produces a calcium nodular particulate that is encased in a sodium flocculant. The material manufactured is used as a nodular electrolytic flocculant reactant in the electrolyte of an alkaline battery.