Abstract:
A light emitting diode is disclosed, wherein the light emitting diode comprises a metal reflective layer for enhancing the light reflection efficiency inside the light emitting diode and reducing the resistance to avoid the power loss. In addition, the light emitting diode further comprises a buffer layer sandwiched between the metal reflective layer and a semiconductor layer, wherein the buffer layer is mixed with metal and non-metallic transparent material for reducing the stress between the semiconductor and the metal to decrease the possibility of the die cracking.
Abstract:
A light emitting diode is disclosed, wherein the light emitting diode comprises a metal reflective layer for enhancing the light reflection efficiency inside the light emitting diode and reducing the resistance to avoid the power loss. In addition, the light emitting diode further comprises a buffer layer sandwiched between the metal reflective layer and a semiconductor layer, wherein the buffer layer is mixed with metal and non-metallic transparent material for reducing the stress between the semiconductor and the metal to decrease the possibility of the die cracking.
Abstract:
A method for fabricating a light emitting diode includes steps of: forming a light emitting structure of the light emitting diode on a substrate; arranging a photoresist layer on a first semiconductor layer of the light emitting structure; depositing a plurality of dielectric material structures on the first semiconductor layer through a plurality of voids of the photoresist layer; removing the photoresist layer to form a plurality of voids between the plurality of dielectric material structures; forming a plurality of metal material structures in the plurality of voids; and forming a reflective layer on the plurality of dielectric material structures and the plurality of metal material structures.
Abstract:
An LED die includes a multi-layer semiconductor with a first surface, a second surface opposite to the first surface, an inclined plane connecting to the first surface and the second surface, a first electrode and a second electrode respectively positioned on the first surface and the second surface, a first heat dissipation layer made of electrically-insulating and thermally conductive material being coated on the first surface and the inclined plane with a first opening exposing the first electrode, and a second heat dissipation layer made of electrically and thermally conductive material being coated on the first heat dissipation layer and contacting and electrically connecting with the first electrode.
Abstract:
A semiconductor optoelectronic structure with increased light extraction efficiency and a fabrication method thereof are presented. The semiconductor optoelectronic structure includes continuous grooves formed under an active layer of the semiconductor optoelectronic structure to reflect light from the active layer and thereby direct more light through a light output surface so as to increase the light intensity from the semiconductor optoelectronic structure.
Abstract:
A semiconductor light-emitting device comprises an N-type semiconductor layer, an active layer formed on the surface of the N-type semiconductor layer, a P-type semiconductor layer formed on the surface of the active layer, and a reflective layer formed on the surface of the P-type semiconductor layer. A plurality of ohmic contact blocks with electrical properties of ohmic contact are on the surface of the reflective layer adjacent to the P-type semiconductor layer, and the remaining part of the surface acts as the reflective regions with higher reflectivity, and the reflective regions can effectively reflect the light generated from the active layer.
Abstract:
A semiconductor optoelectronic structure with increased light extraction efficiency and a fabrication method thereof are presented. The semiconductor optoelectronic structure includes continuous grooves formed under an active layer of the semiconductor optoelectronic structure to reflect light from the active layer and thereby direct more light through a light output surface so as to increase the light intensity from the semiconductor optoelectronic structure.
Abstract:
A method for separating an epitaxial substrate from a semiconductor layer initially forms a patterned silicon dioxide layer between a substrate and a semiconductor layer, and then separates the substrate from the patterned silicon dioxide layer using two wet etching processes.
Abstract:
A semiconductor optoelectronic device with enhanced light extraction efficiency includes at least one protrusion structure, which can be formed around a light-emitting region of the device. The at least one protrusion structure can include a plurality of protrusion structures in one embodiment. In addition, a fabricating method for forming a semiconductor optoelectronic device with enhanced light extraction efficiency is provided in the present invention.
Abstract:
A single chip with multi-LED comprises a substrate on which an N-type semiconductor layer, an active layer and a P-type semiconductor layer are successively stacked. At least one N-type electrode is connected to the N-type semiconductor layer, and is exposed to an opening through the active layer and the P-type semiconductor layer. Further, at least one groove divides the P-type semiconductor layer into a plurality of separated regions, and a P-type electrode is disposed on each separated region.