Abstract:
In an embodiment, the invention provides a proximity sensor including a transmitter die, a receiver die, an ASIC die, a lead frame, wire bonds, a first transparent encapsulant, a second transparent encapsulant, and an opaque encapsulant. The transmitter die, the receiver die and the ASIC die are attached to portions of the lead frame. Wire bonds electrically connect the transmitter die, the receiver die, the ASIC die, and the lead frame. The first transparent encapsulant covers the receiver die, the ASIC die, the wire bonds, and a portion of the lead frame. The second transparent encapsulant covers the transmitter die, the wire bonds, and a portion of the lead frame. The opaque encapsulant covers portions of the first and second encapsulants and a portion of the lead frame.
Abstract:
In an embodiment, the invention provides a proximity sensor including a transmitter die, a receiver die, an ASIC die, a lead frame, wire bonds, a first transparent encapsulant, a second transparent encapsulant, and an opaque encapsulant. The transmitter die, the receiver die and the ASIC die are attached to portions of the lead frame. Wire bonds electrically connect the transmitter die, the receiver die, the ASIC die, and the lead frame. The first transparent encapsulant covers the receiver die, the ASIC die, the wire bonds, and a portion of the lead frame. The second transparent encapsulant covers the transmitter die, the wire bonds, and a portion of the lead frame. The opaque encapsulant covers portions of the first and second encapsulants and a portion of the lead frame.
Abstract:
Various embodiments of a compact optical proximity sensor with a ball grid array and windowed or apertured substrate are disclosed. In one embodiment, the optical proximity sensor comprises a printed circuit board (“PCB”) substrate comprising an aperture and a lower surface having electrical contacts disposed thereon, an infrared light emitter and an infrared light detector mounted on an upper surface of the substrate, an integrated circuit located at least partially within the aperture, a molding compound being disposed between portions of the integrated circuit and substrate, an ambient light detector mounted on an upper surface of the integrated circuit, first and second molded infrared light pass components disposed over and covering the infrared light emitter and the infrared light detector, respectively, and a molded infrared light cut component disposed between and over portions of the first and second infrared light pass components.
Abstract:
Various embodiments of a miniaturized optical proximity sensor are disclosed. In one embodiment, an ambient light sensor and a light detector are mounted on first and second spacers, which in turn are mounted to a top surface of an integrated circuit die-attached to a substrate. An optically-transmissive infrared pass compound is molded over the ambient light sensor, the light detector, the integrated circuit, alight emitter and peripheral portions of the substrate. Next, an optically non-transmissive infrared cut compound is molded to over the optically-transmissive infrared pass compound to provide a miniaturized optical proximity sensor having no metal shield but exhibiting very low crosstalk characteristics.
Abstract:
A sensor for measuring the properties of light from a light source is disclosed. The sensor includes first and second photodetectors that are illuminated by the light. The first and second photodetectors generate first and second photodetector signals indicative of the first and second weighted averages of the intensity of light in a wavelength band between 400 nm and 700 nm. The first photodiode is more sensitive to light having wavelengths between 400 nm and 500 nm than the second photodetector. The sensor also includes a color temperature processing circuit that generates a first processed signal that is related to a ratio of the first and second signals. The color temperature processing circuit could include first and second logarithmic amplifiers that generate first and second logarithmic signals, respectively, from the first and second photodetector signals and a subtraction circuit that forms a signal indicative of the difference between the first and second logarithmic signals.
Abstract:
Input devices configured to provide user interface by detecting three dimensional movement of an external object are disclosed. The input device comprises at least two photodetector pairs, a radiation source and a circuit configurable to detect differential and common mode signals generated in the photodetector pairs. By detecting the common mode and differential signals, movement of an external object may be determined and used to control a pointer, or a cursor.
Abstract:
Various embodiments of a package-on-package optical sensor comprising three distinct different packages are disclosed. The three different packages are combined to form the optical proximity sensor, where the first package is a light emitter package, the second package is a light detector package, and the third package is an integrated circuit package. First and second infrared light pass components are molded or casted atop the light emitter package and the light detector package after they have been mounted atop the integrated circuit package. An infrared light cut component is then molded or casted between and over portions of the light emitter package and the light detector package.
Abstract:
Disclosed are various embodiments of a light guide and corresponding ambient light sensor, computing device and backlit display for use in a portable electronic device. The various embodiments of the light guide are configured to permit ambient light to be collected efficiently and accurately over wide angles of incidence, even under low-ambient-light conditions. The efficient and accurate collection of ambient light by the various embodiments of the light guide disclosed herein may be employed to more accurately control the amount and degree of backlighting provided to a backlit display, which in turn can be used to conserve valuable battery power in a portable electronic device.
Abstract:
A sensor for measuring the properties of light from a light source is disclosed. The sensor includes first and second photodetectors that are illuminated by the light. The first and second photodetectors generate first and second photodetector signals indicative of the first and second weighted averages of the intensity of light in a wavelength band between 400 nm and 700 nm. The first photodiode is more sensitive to light having wavelengths between 400 nm and 500 nm than the second photodetector. The sensor also includes a color temperature processing circuit that generates a first processed signal that is related to a ratio of the first and second signals. The color temperature processing circuit could include first and second logarithmic amplifiers that generate first and second logarithmic signals, respectively, from the first and second photodetector signals and a subtraction circuit that forms a signal indicative of the difference between the first and second logarithmic signals.
Abstract:
An electronic device having a first piece, a second piece moveable with respect to the first piece, and a position sensor operable to sense the position of the second piece relative to the first piece. The electronic device is operated in a first mode or a second mode dependent upon the position of the second piece relative to the first piece. Optionally, a proximity sensor is provided to detect the presence of a body in close proximity to the device when the second piece is in an open position relative to the first piece.