Abstract:
A liquid crystal phase shifter and a liquid crystal antenna are provided. The liquid crystal phase shifter includes a first substrate and a second substrate oppositely disposed; a liquid crystal layer disposed between the first substrate and the second substrate; a radio frequency connector; and a driving chip. A side of the second substrate adjacent to the first substrate includes a first conductive layer connected to a constant potential; a side of the first substrate adjacent to the second substrate includes a second conductive layer including a transmission electrode; the first substrate includes a first area bonded with a circuit board; and the radio frequency connector and the driving chip are both disposed in the first area and transmit signals through the circuit board.
Abstract:
Liquid crystal antenna, splicing liquid crystal antenna, and method of forming liquid crystal antenna are provided. The liquid crystal antenna includes support structures, liquid crystals, a first substrate and a second substrate. The first substrate and the second substrate are arranged oppositely, the support structures are arranged between the first substrate and the second substrate, the first substrate includes first metal layers arranged on a side of the first substrate facing the second substrate, the second substrate includes a second metal layer arranged on a side of the second substrate facing the first substrate. The second metal layer includes functional part and spacers, the functional parts and the first metal layers are stacked along a first direction perpendicular to the second substrate, and the functional parts at least partially overlap the first metal layers. The support structures are arranged between the spacers and the first metal layers.
Abstract:
The present disclosure provides a liquid crystal phase shifting device, a manufacturing method for the liquid crystal phase shifting device, a liquid crystal phase shifter, and an antenna, aiming to achieve the better curved surface applications of the liquid crystal phase shifting device and thus increases the applications. The liquid crystal phase shifting device includes: a first flexible substrate and a second flexible substrate that are opposite to each other; a microstrip line arranged on a side of the first flexible substrate facing towards the second flexible substrate; an electrode layer arranged on a side of the second flexible substrate facing towards the first flexible substrate; and solid-state liquid crystal arranged between the microstrip line and the electrode layer. The liquid crystal phase shifting device is used for performing phase shifting on a microwave signal.
Abstract:
Provided are a liquid crystal phase shifter and an antenna. The liquid crystal phase shifter includes a first substrate, a second substrate, a liquid crystal layer, and at least one phase shift unit. The first substrate includes a first flexible substrate and a first liquid crystal alignment layer located on a side of the first flexible substrate close to the second substrate. The second substrate includes a second flexible substrate and a second liquid crystal alignment layer located on a side of the second flexible substrate close to the first substrate. The phase shift unit includes a microstrip line and a phased electrode. The microstrip line is located between the first flexible substrate and the first liquid crystal alignment layer, and the phased electrode is located between the second flexible substrate and the second liquid crystal alignment layer.
Abstract:
Embodiments of the present disclosure provide a liquid crystal phase shifter and an antenna, which relate to the field of electromagnetic waves and can adjust carrier frequencies applicable to the liquid crystal phase shifter, improving compatibility of the liquid crystal phase shifter. The liquid crystal phase shifter includes at least one phase-shifting unit. The phase-shifting unit includes a microstrip line and a phase-controlled electrode, the microstrip line includes a plurality of sub-microstrip lines, each sub-microstrip line includes two ends and a transmission portion connected between the two ends, and any two adjacent sub-microstrip lines share one end. The phase-shifting unit further includes feed terminals located on a side of the first substrate facing away from the second substrate or on a side of the second substrate facing away from the first substrate, and each of the feed terminals overlaps the corresponding end respectively.
Abstract:
A liquid crystal display and a method for testing the liquid crystal display are disclosed. The liquid crystal display includes a TFT substrate including M scan lines and N data lines, a drive power line, and a switch unit adapted to connect the drive power line to the M scan lines under control of a control signal during a detection of a source of Mura of the liquid crystal display. The testing method includes: applying the control signal to the switch unit; applying a data signal to the N data lines; determining the source of the Mura of the liquid crystal display according to a current brightness of the liquid crystal display; and stopping applying the control signal to the switch unit.
Abstract:
A liquid crystal display and a method for testing the liquid crystal display are disclosed. The liquid crystal display includes a TFT substrate including M scan lines and N data lines, a drive power line, and a switch unit adapted to connect the drive power line to the M scan lines under control of a control signal during a detection of a source of Mura of the liquid crystal display. The testing method includes: applying the control signal to the switch unit; applying a data signal to the N data lines; determining the source of the Mura of the liquid crystal display according to a current brightness of the liquid crystal display; and stopping applying the control signal to the switch unit.
Abstract:
An antenna, a formation method of the antenna, and an antenna group are provided in the present disclosure. The antenna includes a first substrate, a second substrate, a third substrate and a feed source. A first frequency selective surface is on a side of the first substrate; a reflective layer is on a side of the second substrate; a first electrode layer is on a side of the third substrate; and the third substrate is on a side of the second substrate away from the first substrate, and liquid crystal molecules are between the second substrate and the third substrate; or the third substrate is on a side of the first substrate away from the second substrate, and liquid crystal molecules are between the third substrate and the first substrate. The feed source is on the side of the second substrate or on the side of the third substrate.
Abstract:
Embodiments of the present disclosure provide a liquid crystal phase shifter and an antenna, which relate to the field of electromagnetic waves and can adjust carrier frequencies applicable to the liquid crystal phase shifter, improving compatibility of the liquid crystal phase shifter. The liquid crystal phase shifter includes at least one phase-shifting unit. The phase-shifting unit includes a microstrip line and a phase-controlled electrode, the microstrip line includes a plurality of sub-microstrip lines, each sub-microstrip line includes two ends and a transmission portion connected between the two ends, and any two adjacent sub-microstrip lines share one end. The phase-shifting unit further includes feed terminals located on a side of the first substrate facing away from the second substrate or on a side of the second substrate facing away from the first substrate, and each of the feed terminals overlaps the corresponding end respectively.
Abstract:
A phase shifter, a fabrication method thereof, and an antenna are provided. The phase shifter includes a first substrate, a second substrate, a ground electrode disposed on a side of the first substrate facing towards the second substrate, a transmission electrode disposed on a side of the second substrate facing towards the first substrate, and liquid crystals filled between the first substrate and the second substrate. In a direction perpendicular to a plane of the second substrate, the transmission electrode overlaps with the ground electrode. The ground electrode is provided with a detection hollow part, and in the direction perpendicular to the plane of the second substrate, at least a part of the detection hollow part does not overlap with the transmission electrode.