摘要:
An active pixel sensor for producing images from electron-hole producing radiation includes a crystalline semiconductor substrate having an array of electrically conductive diffusion regions, an interlayer dielectric (ILD) layer formed over the crystalline semiconductor substrate and comprising an array of contact electrodes, and an interconnect structure formed over the ILD layer, wherein the interconnect structure includes at least one layer comprising an array of conductive vias. An array of patterned metal pads is formed over the interconnect structure and are electrically connected to an array of charge collecting pixel electrodes. A radiation absorbing structure includes a photoconductive N-I-B-P photodiode layer formed over the interconnect structure, and a surface electrode layer establishes an electrical field across the radiation absorbing structure and between the surface electrode layer and each of the array of charge collecting pixel electrodes. An array measurement circuit measures the charge collected and outputs pixel data defining an image.
摘要:
A MOS or CMOS based photoconductor on active pixel image sensor. Thin layers of semi-conductor material, doped to PIN or NIP photoconducting layers, located above MOS and/or CMOS pixel circuits produce an array of layered photodiodes. Positive and negative charges produced in the layered photodiodes are collected and stored as electrical charges in the MOS and/or CMOS pixel circuits. The present invention also provides additional MOS or CMOS circuits for reading out the charges and for converting the charges into images. With the layered photodiode of each pixel fabricated as continuous layers of charge generating material on top of the MOS and/or CMOS pixel circuits, extremely small pixels are possible with almost 100 percent packing factors. MOS and CMOS fabrication techniques permit sensor fabrication at very low costs. In preferred embodiments all of the sensor circuits are incorporated on or in a single crystalline substrate along with the sensor pixel circuits. Techniques are disclosed for tailoring the spectral response of the sensor for particular applications.
摘要:
A novel MOS or CMOS based active sensor array for producing electronic images from electron-hole producing light. Each pixel of the array includes a layered photodiode for converting the electron-hole producing light into electrical charges and MOS and/or CMOS pixel circuits located under the layered photodiodes for collecting the charges. The present invention also provides additional MOS or CMOS circuits in and/or on the same crystalline substrate for converting the collected charges into images and manipulating image data. The layered photodiode of each pixel is fabricated as continuous layers of charge generating material on top of the MOS and/or CMOS pixel circuits so that extremely small pixels are possible with almost 100 percent packing factors. In a preferred embodiment the sensor is a 0.3 mega pixel (3.2 mm×2.4 mm, 640×480) array of 5 micron square pixels which is compatible with a lens of {fraction (1/4.5)} inch optical format. In a preferred embodiment the sensor along with focusing optics is incorporated into a cellular phone camera or a camera attachment the cellular phone to permit transmission of visual images along with the voice communication.
摘要:
A microcrystalline germanium image sensor array. The array includes a number of pixel circuits fabricated in or on a substrate. Each pixel circuit comprises a charge collecting electrode for collecting electrical charges and a readout means for reading out the charges collected by the charge collecting electrode. A photodiode layer of charge generating material located above the pixel circuits convert electromagnetic radiation into electrical charges. This photodiode layer includes microcrystalline germanium and defines at least an n-layer, and i-layer and a p-layer. The sensor array also includes and a surface electrode in the form of a grid or thin transparent layer located above the layer of charge generating material. The sensor is especially useful for imaging in visible and near infrared spectral regions of the electromagnetic spectrum and provides imaging with starlight illumination.
摘要:
A MOS or CMOS sensor for high performance imaging in broad spectral ranges including portions of the infrared spectral band. These broad spectral ranges may also include portions or all of the visible spectrum, therefore the sensor has both daylight and night vision capabilities. The sensor includes a continuous multi-layer photodiode structure on a many pixel MOS or CMOS readout array where the photodiode structure is chosen to include responses in the near infrared spectral ranges. A preferred embodiment incorporates a microcrystalline copper indium diselenide/cadmium sulfide photodiode structure on a CMOS readout array. An alternate preferred embodiment incorporates a microcrystalline silicon germanium photodiode structure on a CMOS readout array. Each of these embodiments provides night vision with image performance that greatly surpasses the GEN III night vision technology in terms of enhanced sensitivity, pixel size and pixel count. Further advantages of the invention include low electrical bias voltages, low power consumption, compact packaging, and radiation hardness. In special preferred embodiments CMOS stitching technology is used to provide multi-million pixel focal plane array sensors. One embodiments of the invention made without stitching is a two-million pixel sensor. Other preferred embodiments available using stitching techniques include sensors with 250 million (or more) pixels fabricated on a single wafer. A particular application of these very high pixel count sensors is as a focal plane array for a rapid beam steering telescope in a low earth orbit satellite useful for tracking over a 1500-meter wide track with a resolution of 0.3 meter.
摘要:
A MOS or CMOS sensor for high performance imaging in broad spectral ranges including portions of the infrared spectral band. These broad spectral ranges may also include portions or all of the visible spectrum, therefore the sensor has both daylight and night vision capabilities. The sensor includes a continuous multi-layer photodiode structure on a many pixel MOS or CMOS readout array where the photodiode structure is chosen to include responses in the near infrared spectral ranges. A preferred embodiment incorporates a microcrystalline copper indium diselenide/cadmium sulfide photodiode structure on a CMOS readout array. An alternate preferred embodiment incorporates a microcrystalline silicon germanium photodiode structure on a CMOS readout array. Each of these embodiments provides night vision with image performance that greatly surpasses the GEN III night vision technology in terms of enhanced sensitivity, pixel size and pixel count. Further advantages of the invention include low electrical bias voltages, low power consumption, compact packaging, and radiation hardness. In special preferred embodiments CMOS stitching technology is used to provide multi-million pixel focal plane array sensors. One embodiments of the invention made without stitching is a two-million pixel sensor. Other preferred embodiments available using stitching techniques include sensors with 250 million (or more) pixels fabricated on a single wafer. A particular application of these very high pixel count sensors is as a focal plane array for a rapid beam steering telescope in a low earth orbit satellite useful for tracking over a 1500-meter wide track with a resolution of 0.3 meter.
摘要:
An active pixel sensor for producing images from electron-hole producing radiation includes a crystalline semiconductor substrate having an array of electrically conductive diffusion regions, an interlayer dielectric (ILD) layer formed over the crystalline semiconductor substrate and comprising an array of contact electrodes, and an interconnect structure formed over the ILD layer, wherein the interconnect structure includes at least one layer comprising an array of conductive vias. An array of patterned metal pads is formed over the interconnect structure and are electrically connected to an array of charge collecting pixel electrodes. A radiation absorbing structure includes a photoconductive N-I-B-P photodiode layer formed over the interconnect structure, and a surface electrode layer establishes an electrical field across the radiation absorbing structure and between the surface electrode layer and each of the array of charge collecting pixel electrodes. An array measurement circuit measures the charge collected and outputs pixel data defining an image.
摘要:
A microcrystalline germanium image sensor array. The array includes a number of pixel circuits fabricated in or on a substrate. Each pixel circuit comprises a charge collecting electrode for collecting electrical charges and a readout means for reading out the charges collected by the charge collecting electrode. A photodiode layer of charge generating material located above the pixel circuits convert electromagnetic radiation into electrical charges. This photodiode layer includes microcrystalline germanium and defines at least an n-layer, and i-layer and a p-layer. The sensor array also includes and a surface electrode in the form of a grid or thin transparent layer located above the layer of charge generating material. The sensor is especially useful for imaging in visible and near infrared spectral regions of the electromagnetic spectrum and provides imaging with starlight illumination.
摘要:
An electronic imaging sensor. The sensor includes an array of photo-sensing pixel elements for producing image frames. Each pixel element defines a photo-sensing region and includes a charge collecting element for collecting electrical charges produced in the photo-sensing region, and a charge storage element for the storage of the collected charges. The sensor also includes charge sensing elements for sensing the collected charges, and charge-to-signal conversion elements. The sensor also includes timing elements for controlling the pixel circuits to produce image frames at a predetermined normal frame rate based on a master clock signal (such as 12 MHz or 10 MHz). This predetermined normal frame rate which may be a video rate (such as about 30 frames per second or 25 frames per second) establishes a normal maximum per frame exposure time. The sensor includes circuits (based on prior art techniques) for adjusting the per frame exposure time (normally based on ambient light levels) and novel frame rate adjusting features for reducing the frame rate below the predetermined normal frame rate, without changing the master clock signal, to permit per frame exposure times above the normal maximum exposure time. This permits good exposures even in very low light levels. (There is an obvious compromise of lowering of the frame rate in conditions of very low light levels, but in most cases this is preferable to inadequate exposure.) These adjustments can be automatic or manual.
摘要:
The present invention provides a MOS or CMOS based active sensor array for producing electronic images from charge producing light. Each pixel of the array includes a layered photodiode for converting the light into electrical charges and MOS and/or CMOS pixel circuits located under the layered photodiodes for collecting the charges. The present invention also provides additional MOS or CMOS circuits in and/or on the same crystalline substrate for processing the collected charges for the purposes of producing images. The layered photodiode of each pixel is fabricated as continuous layers of charge generating material on top of the MOS and/or CMOS pixel circuits so that extremely small pixels are possible with almost 100 percent packing factors. In preferred embodiments, pixel crosstalk is minimized by careful design of the bottom photodiode layer with the addition of carbon to the doped amorphous silicon N or P layer to increase the electrical resistivity. The increased electrical resistivity also helps avoid adverse electrical effects at the edge of the pixel array where the pixel electrodes may be in close proximity to the material used for a top transparent electrode layer.