Abstract:
A loop-type heat exchange device (10) includes an evaporator (20), a vapor conduit (30), a condenser (50) and a liquid conduit (70). The evaporator contains therein a working fluid. The working fluid turns into vapor in the evaporator upon receiving heat from a heat-generating component. The condenser includes a housing member (52), a plurality of tube members (53) being in fluid communication with the housing member, and a fin member (54) maintained in thermal contact with the tube members. The vapor conduit and the liquid conduit are each connected between the evaporator and the condenser. The vapor conduit conveys the vapor generated in the evaporator to the tube members of the condenser. The vapor turns into condensate in the tube members upon releasing the heat to the fin member. The condensate is conveyed back to the evaporator by the liquid conduit.
Abstract:
A spreading device (10) includes an injector (14) and a spreading tube (16) connected with the injector. The injector contains therein a viscous thermal medium material for being spread on a surface of a cooling device for electronic components. The spreading tube defines therein at least one outlet hole (164) for release of the thermal medium material contained in the injector. The spreading device further includes means formed on the spreading tube for evenly distributing the material released through the outlet hole of the spreading tube over an entire area of the surface to be applied with the thermal medium material.
Abstract:
A liquid cooling system (30) for removing heat from a heat-generating component is disclosed. The liquid cooling system includes a heat-absorbing member (50) defining therein a fluid flow channel (54) for passage of a coolant. The fluid flow channel includes a plurality of passage segments (54a, 54b, 54c) arranged from a center portion to a peripheral portion of the heat-absorbing member. Every two adjacent passage segments are in fluid communication with each other in such a manner that, when the coolant flows from one passage segment to enter into an adjacent passage segment, the coolant is divided into at least two currents flowing in different directions in the adjacent passage segment.
Abstract:
A spreading device (10) includes an injector (14) and a spreading tube (16) connected with the injector. The injector contains therein a viscous thermal medium material for being spread on a surface of a cooling device for electronic components. The spreading tube defines therein at least one outlet hole (164) for release of the thermal medium material contained in the injector. The spreading device further includes means formed on the spreading tube for evenly distributing the material released through the outlet hole of the spreading tube over an entire area of the surface to be applied with the thermal medium material.
Abstract:
A cooling device for multiple heat generating components is disclosed, which includes an evaporator (1), a condenser (3), a vapor conduit (6), a liquid conduit (5) and a diffluent member (19). The evaporator includes at least two cooling members (15) for thermally contacting the multiple heat-generating components, respectively. Each of the cooling members defines therein a fluid flow channel (22) for passage of a refrigerant fluid. The vapor and liquid conduits each are connected between the cooling member and the condenser. The diffluent member is in fluid communication with the liquid conduit and the fluid flow channel of each of the cooling members. The diffluent member functions to evenly distribute the refrigerant fluid into the cooling members so as to maintain the same heat removal capacity for the cooling members.
Abstract:
A rotary total heat exchange apparatus includes at least an air-providing member, a first air passage and a second air passage, a sensible heat exchanger (21), and a total heat exchange wheel (1). The air-providing member provides a first airflow from outdoors and a second airflow from indoors into the rotary total heat exchange apparatus. The first and second air passages isolate from each other for guiding the first and second airflows respectively passing through. The sensible heat exchanger spans across the first and second air passages simultaneously for conducting a sensible heat exchange between the first and second airflows. The total heat exchange wheel is capable of rotating through the first and second air passages for conducting a total heat exchange between the first and second airflows.
Abstract:
An exemplary heat dissipation device includes a conductive plate and a fastener. The fastener includes a fastening element and a spring coiled around the fastening element. The fastening element includes a pole portion, a head portion, and an engaging portion. The conductive plate has a through hole defined therein. An inner face defining the through hole includes a first face and a second face which have different curvatures. A flange protrudes from a circumference of the pole portion adjacent to the engaging portion. The structure of the flange matches the configuration of the through hole. After the flange extends through the through hole from a side of the conductive plate, the flange is rotated an angle and buckled at another opposite side of the conductive plate. The spring is compressed between the head portion and the conductive plate.
Abstract:
A heat exchange module (1) includes a fan duct, an evaporator (22), a condenser (26) and an electric fan (50). The fan duct includes a lower portion (10) and an upper portion (30). The lower portion cooperates with the upper portion to define therebetween an air passage (90). The evaporator contains therein a working fluid. The condenser is in fluid communication with the evaporator. The evaporator and the condenser are received in the air passage defined by the fan duct. The working fluid turns into vapor in the evaporator upon receiving heat from a heat-generating component (70) and the vapor turns into condensate upon releasing the heat to the condenser. The electric fan is attached to the fan duct. The electric fan produces an airflow flowing through the air passage for removing the heat away from the condenser.
Abstract:
A mounting assembly (30) for mounting an evaporator (21) of a refrigeration system (20) to an electronic component (10) includes a housing member (31) and a clamping member (32). The housing member defines a through hole (33) with the electronic component located therein. The evaporator is received in the through hole and located in axial alignment with the electronic component. The evaporator defines therein a fluid flow channel (25) for passage of a refrigerant fluid. The refrigeration system is in fluid communication with the fluid flow channel of the evaporator to supply refrigerant fluid thereto. The clamping member is attached to the housing member and has an abutting portion (84) integrally formed therefrom for exerting an uniform force to the evaporator to maintain the evaporator in thermal contact with the electronic component.
Abstract:
A modular jack connector has an anti-mismating element for preventing incorrect insertion of smaller sized plug connectors. The modular jack connector includes all insulating housing, an insulating terminal seat disposed in the insulating housing, a plurality of contacts disposed in the insulating terminal seat, and two metal anti-mismating elements. One end of each anti-mismating element is fixed to the insulating terminal seat, and the other end is bifurcated with an inner bifurcation bent downward and vertically to form a stopper and an outer bifurcation extending forward and downward to form an inclined guide. The distance between the two stoppers of the two anti-mismating elements is smaller than that between the two inclined guides and equals the width of the smaller sized plug connector. A smaller sized plug connector cannot contact the inclined guides and are blocked by two stoppers to avoid incorrect insertion while it is inserted.