Abstract:
A method of controlling a turbine engine, including: measuring a first temperature by a first temperature sensor; measuring a second temperature by a second temperature sensor; estimating a third temperature modeling the first temperature; and determining at least one control setpoint for at least one piece of variable-geometry equipment of the engine, as a function of the measured first temperature. The first sensor presents a time constant longer than a time constant of the second sensor. The method further detects ingestion of water or hail as a function of a drop in the measured second temperature; and when water or hail ingestion is detected, determines the control setpoint as a function of the estimated third temperature.
Abstract:
The present invention relates to anti-Axl antibodies and uses thereof in diagnostic and therapeutic methods. More particularly, the present invention relates to a monoclonal antibody having specificity for Axl comprising an heavy chain variable region comprising SEQ ID NO:2 in the H-CDR1 region, SEQ ID NO:3 in the H-CDR2 region and SEQ ID NO:4 in the H-CDR3 region; and a light chain variable region comprising SEQ ID NO: 6 in the L-CDR1 region, SEQ ID NO:7 in the L-CDR2 region and SEQ ID NO:8 in the L-CDR3 region. Said monoclonal antibody binds to the extracellular domain of Axl via, SEQ ID NO:9 and SEQ ID NO: 10.
Abstract translation:本发明涉及抗Ax1抗体及其在诊断和治疗方法中的用途。 更具体地说,本发明涉及对Ax1具有特异性的单克隆抗体,其包含H-CDR1区中包含SEQ ID NO:2的重链可变区,H-CDR2区中的SEQ ID NO:3和SEQ ID NO: 4在H-CDR3区域; 以及包含L-CDR1区中的SEQ ID NO:6,L-CDR2区的SEQ ID NO:7和L-CDR3区的SEQ ID NO:8的轻链可变区。 所述单克隆抗体通过SEQ ID NO:9和SEQ ID NO:10与Ax1的细胞外结构域结合。
Abstract:
A control of a fuel metering device for a turbine engine as a function of a weight flow rate setpoint includes responding to at least one validity criterion to select a weight flow rate from among: a weight flow rate calculated as a function of a position signal; a weight flow rate calculated as a function of the position signal and of at least one temperature measurement signal; a weight flow rate calculated as a function of the position signal and of at least one permittivity measurement signal; a weight flow rate calculated as a function of the position signal, of at least one temperature measurement signal, and of at least one permittivity measurement signal; and a weight flow rate calculated as a function of a temperature measurement signal, of a permittivity measurement signal, and of a volume flow rate measurement signal.
Abstract:
A system for controlling at least two sets of variable geometry equipment of a turbine engine. The turbine engine includes at least one first body and a second body, the first set of equipment being a stage of variable stator vanes of a compressor of the first body moving between a closed position during idling and an open position at high speed, and the second set of equipment being at least one bleed valve of a compressor of the second body moving between an open position during idling and a closed position at high speed. The actuator drives the second set of equipment by an actuating part that is actuated over part of the course of the actuator and idle on an abutment over the rest of the course, and by a sliding joining element providing a backlash in the actuation of the second set of equipment.
Abstract:
An estimation method that can estimate a stream temperature in a turbojet including: digitally modeling the stream temperature with help of a modeled signal; and correcting the modeled signal with help of an error signal, a signal obtained after correction representing an estimate of the stream temperature. When predetermined conditions relating to at least one operating stage of a turbojet and to temperature stability are satisfied, the error signal is updated from the modeled signal and from a measurement signal of the stream temperature as delivered by a temperature sensor.
Abstract:
A system and method for controlling clearance between tips of moving blades of an aeroplane gas-turbine engine and a turbine shroud of an outer casing surrounding the blades. The method includes controlling, according to an operating speed of the engine, a valve positioned in an air duct opening at a stage of the compressor of the engine and leading into a control housing positioned around the outer surface of the turbine shroud and supplied with air coming only from the compressor stage. The valve is opened to cool the turbine shroud during a high-speed phase corresponding to takeoff and climb phases of an aeroplane propelled by the engine and during a nominal-speed phase following the high-speed phase and corresponding to a cruise phase of the aeroplane.
Abstract:
A control system for controlling at least two variable-geometry devices of a turbomachine, and a turbomachine including such a control system, the system including an actuator that actuates both devices; one of the devices including at least one stage of variable-pitch stator vanes, and the other device being an air-bleed valve for a turbomachine body. The system is configured to control progression opening of the vane stage and progressive closing of the air-bleed valve as an actuation parameter of the actuator increases. As a result, the control system serves advantageously to control two devices using a single control system.
Abstract:
An electrical connection system for an analysis system and a method for analysis of a liquid sample on an analytical test element using the described analysis system are disclosed. The analysis system provides an evaluation appliance for evaluation of electrical signals, a test element holder for holding and positioning of an analytical test element in a measurement position, and an electrical contact element which makes electrical contact with an electrical contact surface of an analytical test element to produce an electrical connection between the contact surface and the evaluation appliance. The contact element is moved by means such that contact with the electrical contact surface of the test element is made when the test element holder is in the measurement position.
Abstract:
The invention is directed to a compound comprising one or more CD1d complexes in association with an antibody specific for a cell surface marker. The CD1d complexes comprise a CD1d, a β2-microglobulin molecule, and may further comprise an antigen bound to the CD1d binding groove. The invention is further directed to methods of inhibiting or stimulating an immune response with the CD1d-antibody compounds, in particular anti-tumor and autoimmunity responses.
Abstract:
A needleless hypodermic injection system for injecting a liquid medication, which system comprises a disposable cartridge which contains a medication and which includes a propellant and an igniter, and a reusable application device which comprises a pressure chamber for receiving the medication cartridge, actuation means including an ignition system and means for ensuring reliability and safety of the system. The reusable application device comprises: (a) a housing including a fist housing section and a second housing section which are adapted to be assembled together by a screwing operation, the first housing section comprising a front part having an injection outlet and a chamber adapted to receive a the cartridge contains the medication to be injected and also contains a propellant and an igniter, and (b) means for selectively activating said igniter of said cartridge when predetermined conditions are fulfilled.