Abstract:
Silicon Carbide (SiC) PiN Diodes are provided having a reverse blocking voltage (VR) from about 3.0 kV to about 10.0 kV and a forward voltage (VF) of less than about 4.3 V.
Abstract:
Methods of forming an oxide layer on silicon carbide include thermally growing an oxide layer on a layer of silicon carbide, and annealing the oxide layer in an environment containing NO at a temperature greater than 1175° C. The oxide layer may be annealed in NO in a silicon carbide tube that may be coated with silicon carbide. To form the oxide layer, a preliminary oxide layer may be thermally grown on a silicon carbide layer in dry O2, and the preliminary oxide layer may be re-oxidized in wet O2.
Abstract:
Methods of forming an oxide layer on silicon carbide include thermally growing an oxide layer on a layer of silicon carbide, and annealing the oxide layer in an environment containing NO at a temperature greater than 1175° C. The oxide layer may be annealed in NO in a silicon carbide tube that may be coated with silicon carbide. To form the oxide layer, a preliminary oxide layer may be thermally grown on a silicon carbide layer in dry O2, and the preliminary oxide layer may be re-oxidized in wet O2.
Abstract translation:在碳化硅上形成氧化物层的方法包括在碳化硅层上热氧化氧化物层,并在含有NO的环境中在大于1175℃的温度下退火氧化物层。氧化物层可以在NO 可以涂覆有碳化硅的碳化硅管。 为了形成氧化物层,预氧化物层可以在干燥的O 2 N 2中在碳化硅层上热生长,并且预氧化物层可以在湿O 2中再氧化, SUB>。
Abstract:
Silicon Carbide (SiC) PiN Diodes are provided having a reverse blocking voltage (VR) from about 3.0 kV to about 10.0 kV and a forward voltage (VF) of less than about 4.3 V.
Abstract translation:提供具有约3.0kV至约10.0kV的反向阻断电压(V SUB R N)的碳化硅 比约4.3 V.
Abstract:
Methods of forming an oxide layer on silicon carbide include thermally growing an oxide layer on a layer of silicon carbide, and annealing the oxide layer in an environment containing NO at a temperature greater than 1175° C. The oxide layer may be annealed in NO in a silicon carbide tube that may be coated with silicon carbide. To form the oxide layer, a preliminary oxide layer may be thermally grown on a silicon carbide layer in dry O2, and the preliminary oxide layer may be re-oxidized in wet O2.
Abstract:
Methods of forming an oxide layer on silicon carbide include thermally growing an oxide layer on a layer of silicon carbide, and annealing the oxide layer in an environment containing NO at a temperature greater than 1175° C. The oxide layer may be annealed in NO in a silicon carbide tube that may be coated with silicon carbide. To form the oxide layer, a preliminary oxide layer may be thermally grown on a silicon carbide layer in dry O2, and the preliminary oxide layer may be re-oxidized in wet O2.