Abstract:
Methods and means related to rejecting heat through thermal storage are provided. A heat sink includes internal cavities containing a phase-change material. Heat from a thermal load is rejected by flowing fluid coolant at a normal operating temperature. Failure of the fluid coolant system causes heat storage within the phase-change material at a temperature slightly greater than the normal operating temperature. Restoration of the fluid coolant system results in stored heat rejection and a return to a normal operating temperature. Normal operation of the thermal load can be performed while efforts are made to restore the fluid coolant system.
Abstract:
A cooling apparatus is disclosed. The cooling apparatus comprising a printed circuit (PC) board with an integrated circuit (IC) socket mounted onto the top side of the PC board. A mounting frame generally in the shape of a plate, with a first opening passing through the center of the plate, is mounted on the top side of the PC board with the IC socket located inside the first opening. A cold plate is attached to the mounting frame, the cold plate has an opening that passes through the cold plate. The opening in the cold plate is sized to allow an IC to be inserted into the IC socket through the opening. A fluid passageway is formed inside the cold plate. A fluid inlet port and a fluid outlet port are mounted on the cold plate and coupled to a first end and a second end of the fluid passageway, respectively. A heat spreader is removably attached to the top side of the cold plate wherein the bottom side of the heat spreader is configured to contact the top side of an IC when the IC is mounted in the IC socket.
Abstract:
A land grid array socket assembly comprises a plurality of cells, with each cell comprising an insulative body having a top surface, and contact conductor that has a first portion that extends from a board contact point up to and beyond the top surface to a contact bend, and a second portion that extends from the contact bend to terminate below the top surface and within the insulative body.
Abstract:
Flow measurement systems and methods are provided. A flow measurement system can include at least one heat-producing computing device (160) having at least one fluid inlet (120) and one fluid outlet (130). The system can further include at least one inlet fluid inlet temperature sensor (140) and at least one outlet fluid temperature sensor (150). At least one current sensor (160) measuring the current supplied to at least a portion of the at least one heat-producing computing device (110) can also be included with the system (100). The system can also include at least one calculating device (180) adapted to calculate the inlet fluid flow rate based at least in part upon the sensed inlet fluid temperature, the sensed outlet fluid temperature, and the sensed current flow.
Abstract:
A cooling system for a blade enclosure is disclosed. The cooling system comprises a thermal bus bar (TBB) 1220 positioned in the middle of the blade enclosure. The TBB 122 has a front face and a back face. When blades are inserted into the blade enclosure, a heat transfer plate 584 on the blade makes thermal contact with either the front or back face of the TBB 122. The TBB 122 is cooled, thereby cooling the blades.
Abstract:
A cooling apparatus is disclosed. The cooling apparatus comprising a printed circuit (PC) board with an integrated circuit (IC) socket mounted onto the top side of the PC board. A mounting frame generally in the shape of a plate, with a first opening passing through the center of the plate, is mounted on the top side of the PC board with the IC socket located inside the first opening. A cold plate is attached to the mounting frame, the cold plate has an opening that passes through the cold plate. The opening in the cold plate is sized to allow an IC to be inserted into the IC socket through the opening. A fluid passageway is formed inside the cold plate. A fluid inlet port and a fluid outlet port are mounted on the cold plate and coupled to a first end and a second end of the fluid passageway, respectively. A heat spreader is removably attached to the top side of the cold plate wherein the bottom side of the heat spreader is configured to contact the top side of an IC when the IC is mounted in the IC socket.
Abstract:
A processor module includes a processor and a voltage regulator both mounted on a carrier. The voltage regulator is mounted with its contacts under compression to ensure good electrical contact with pads on the carrier. Heat sinks mounted respectively on the processor and the voltage regulator are rigidly coupled to each other to provide rigidity to the module and thus maintain the desired compression of the voltage regulator contacts.
Abstract:
An apparatus and method for installing an electrical support structure, such as a printed circuit board or card within a computerized device, are disclosed. In at least some embodiments, the apparatus includes a first structure, a second structure supported by the first structure and capable of movement with respect to the first structure along a first direction, and a third structure slidingly supported by the second structure. Sliding motion of the third structure with respect to the second structure results in movement of the third structure relative to the first structure that is along a second direction different from the first direction.
Abstract:
A heat sink surface mounts to a printed circuit board in direct separation, thermal and physical, from components on the board. The heat sink cools the components by conducting heat from the components through the printed circuit board to the heat sink.
Abstract:
A cable retention device includes a conduit that is joined to an end plate forming a continuous passage through the conduit. Cable shielding is clamped to the conduit to establish a pathway to ground. The end plate presents a shoulder face that is inserted into a guide rail clamp. The shoulder face includes a pair of arches that function as fulcrums to flex the guide rail bracket, which secures the cable retention device to a chassis under compressive force.